
f-v

SPREAD
SHEETS

User’s Manual

USER’S
MANUAL

STATEMENT

“This equipment generates and uses radio frequency energy. If it is
not properly installed and used in strict accordance with the manu
facturer’s instructions, this equipment may interfere with radio and
television reception. This machine has been tested and found to com
ply with the limits for a Class B computing device in accordance with
the specifications in Subpart J of Part 15 of the FCC Rules, which are
designed to provide reasonable protection against such interference
in a residential installation. If you suspect interference, you can test
this equipment by turning it off and on. If you determine that there
is interference with radio or television reception, try one or more of
the following measures to correct it:

• reorient the receiving antenna
• move the computer away from the receiver
• change the relative positions of the computer equipment and

the receiver
• plug the computer into a different outlet so that the computer

and the receiver are on different branch circuits

If necessaiy consult your Commodore dealer or an experienced radio/
television tech ician for additional suggestions. You may also wish to
consult the following booklet, which was prepared by the Federal
Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems.”
This booklet is available from the U.S. Government Printing Office,
Washington, D.C. 20402, Stock No. 004-000-00345-4.”

You should use only the cables, accessories, and peripherals re
commended by Commodore for your Plus/4. All cables, including the
cables for the television hookup, serial port, video port, Datassette™,
and joysticks, are specially shielded, in accordance with the regula
tions of the Federal Communications Commission. Failure to use
the appropriate accessories and cables will invalidate the FCC grant •
of certification, and may cause harmful radio interference.

Copyright © 1984 by Commodore Electronics Limited
All rights reserved.
This manual contains copyrighted and proprietary information. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or ctherwise, without the prior
written permission of Commodore Electronics Limited.
Commodore BASIC v. 3.5
Copyright © 1984 by Commodore Electronics Limited,all light-0 r '; crved.
Copyright © 1977 by Microsoft, all rights reserved.

cc
cc

cc
ct

cc
ct

cc
ct

ec
tc

cc
cc

cc
ec

n

n

COMMODORE PLUS/4
USER MANUAL

TABLE OF
CONTENTS

INTRODUCTION
CHAPTER 1 Unpacking and Setting Up

CHAPTER 2 Using the Keyboard and Screen

CHAPTER 3 Using Software

CHAPTER 4 Getting Started...

CHAPTER 5 Beginning BASIC

CHAPTER 6 Numbers and Calculations

CHAPTER 7 Using Graphics and Color

CHAPTER 8 Making Sound and Music

42 —

58 •

68 -
83

104^^

COMMODORE PLUS/4 ENCYCLOPEDIA n3*
115—BASIC 3.5 Encyclopedia

Commands 118^w
Statements 130
Functions 158
Variables and Operators 164'—*

2 BASIC 3.5 Abbreviations 169

3 Conversion Programs

4 Error Messages

5 TEDMON..

6 Screen Display Codes

7 ASCII and CHR$ Codes

8 Screen and Color Memory Maps

9 Memory Register Map

10 Deriving Mathematical Functions

11 Musical Note Table ..

12 Programs To Try

172_

174^

184

193

196
199^

201

204 ”
Aft

206 —

I
C (C

C
C

C C
C

C
C

C C
C

C t
C (

c c t

13 RS-232 Guidelines ..209

14 Book List..215

INDEX.. 216

INTRODUCTION

You’ve made a wise purchase... the Plus/4 is the first home computer
ever designed especially for productivity applications. Of course, it’s
still able to do all the other things a home computer can be used for.
This manual is designed to help you learn those “other things” your
Plus/4 can do. You’ll learn how to:

• Set up your Plus/4
• Use the different functions of all the keys on the keyboard
• Access different types of Commodore Software
• Use the mathematical, graphics, sound and programming

capabilities of your Plus/4

The other manual included with your computerfThe Plus/4 Built-in
Integrated Software Manual) tells you how to use the wordprocessing,
electronic spreadsheet, database and graphics packages. If your
main interest is in these productivity applications, and you can’t wait to
get started using them, we still recommend that you read through at
least chapter one of this manual (“Unpacking and Setting Up”) before
reviewing the Built-in Software Manual.

WHAT’S
SPECIAL

ABOUT
THE

PLUS/4

• 64K RAM (60K available for BASIC programming)
• Full Typewriter Style Keyboard
• Optional Built-In Software
• Screen Window Capability
• HELP Key
• 8 Pre-programmed, Reprogrammable Function Keys
• Four Separate Cursor Keys
• Uses Most COMMODORE 64 and VIC-20 Peripherals
• 121 Colors (16 primary colors, 8 luminance levels)
• Over 75 BASIC Commands
• High Resolution Graphics Plotting
• Split-Screen Text With High-Res Graphics
• Graphic Character Set On Keyboarc
• Keyboard Color Controls
• 320 x 200 Pixel Screen Resolution
• Reverse and Flashing Characters
• 2 Tone Sound Generators
• Built-In Machine Language Monitor (17 commands)

CREATING
A COMPLETE

COMPUTER
SYSTEM

Computer: Commodore PLUS/4

im
m

iti
G

tit
et

G
<•

•••
•••

! •
 e

•

1 1
 J

1 a
 J

J 3
 3

1 3
 1

3 3
 1

3 3
 3

1 3
 3

3 1
 3

3 3
 3

Display: Commodore 1702 or 1802/1803 Color Monitor

Storage: Commodore 1531 Datassette (tape recorder) or Commodore
Disk Drive

Printer: Commodore Printer

• iiiiiiiioiiisioeiioioosi
i

cc tec t c ttcrttec ccrccctcec ctc Controller: Commodore PLUS/4 Joysticks

WHERE By now you’ve done enough reading and you want to get started.
TO Here’s what we recommend you do now:

FROM • Send in your warranty card
HERE? • Subscribe to the Commodore magazines to get the latest informa

tion on your computer

Read this manual and try the exercises. Read the built-in software
manual and get used to the four integrated packages. Keep checking
in with the Commodore dealers in your area for new developments in
software, books and peripherals. Learn, program, file, write, calculate,
graph, play... enjoy your new Commodore Plus/4!

6

B
O

O
B

llltlllttlllll

fccctcctcccccciccccfftcccctr

CHAPTER 1
UNPACKING
AND
SETTING
UP
• Unpacking your Commodore Plus/4

• Getting to know the switches and sockets

• Setting up your Commodore Plus/4

• Troubleshooting chart

• Peripherals

UNPACKING
YOUR

COMMODORE
PLUS/4

Now that you’ve opened the box containing your new Plus/4 and found
this manual, the first thing that you should do is check to make sure that
you have all the items on this list. You should have:

1. Your Commodore Plus/4

2. The power supply
One end plugs into a wall outlet, the other plugs into the right side of
the computer.

tooiiotaocaoD
sioiooctoociot

3. The TV switchbox
This connects to the antenna jack on the back of your TV. You don’t
need the switchbox if you plan to connect your Plus/4 to a monitor.

4. The RF cable
This connects the TV switchbox to the RF output jack on the left
side of the Plus/4. You don’t need this cable to connect your Plus/4
to a monitor.

5. The user manual

6. Other assorted literature
Warranty card
Commodore Magazines subscription card

7. The Plus/4 Built-in Integrated Software Manual

If you don’t find all these items in the box, check with your dealer
immediately for replacements.

Before you connect anything, you should look over these drawings of
your computer. These drawings identify all the outlets so you can set
up your computer system quickly and easily.

GETTING
TO

KNOW
THE

SWITCHES
AND

SOCKETS
The Right

Side
of Your
PLUS/4

•| The On/Off Switch
Your Plus/4 should be turned OFF when you install or remove car
tridges or any peripheral device such as a printer or disk drive. There
is a red power light located below the keyboard on the left, so you
can be sure whether power is off.

2 The Reset Button
There are two ways to use the RESET button:

1. You can use the RESET button to reset your computer as if you’d
just turned it on. Just press the reset button once. Remember: when
you press the reset button, you lose any BASIC program currently
in memory. **

2. If you want to reset your Plus/4 and keep your BASIC program,
hold down the RUN/STOP key and then press the RESET button. When
you do this, your Plus/4 goes to the built-in machine language monitor.
Type an X and press the RETURN key to get back to BASIC. Your pro
gram remains intact in the Plus/4 memory. Just type LIST to display the
program on your screen.

*When you press RESET, the Plus/4 automatically issues the NEW
command, which clears the screen. This can be reversed. See the
Plus/4 Programmer’s Reference Guide for information on UNNEWing
your program if you’ve pressed the reset button by accident.

aotaoottotiio
j a

J j
3 o o o ® o • e d o

□ a
j□

j >
 a

□ji
j}

11
11

a
93

99
1g

□a
a

a1

The
Back

of
Your

Computer

The socket and the switch on the left side of the Plus/4 are both used
for TV connections. Neither is used if you’re connecting your Plus/4 to
a monitor.

The RF Jack
This is where you plug in one end of the RF cable (the thin black
cable). You can plug either end into this jack and the other end into the
TV switchbox.

The High/Low Switch
This switch controls which channel is used for Plus/4 video output. Set
the H/L switch to L for output on channel 3. Set the H/L switch to H for
video on channel 4.

You can use either channel 3 or 4 on your TV to display the video pic
ture from your computer. If you have a channel 3 TV station in your
area, select channel 4, and vice versa. Experiment to see which setting
gives you the best picture.

5 6 7 8 9 10 11

The sockets on the back of your computer connect a variety of
accessories to your Plus/4. Each connector is different. Be sure
you plug each accessory into the correct socket.

5 The Power Socket
The end of the power supply cable fits here. Plug the other end
into a standard wall socket for three-prong plugs.

g The Serial Bus
You can plug a disk drive or a printer into this socket. If you want to
plug in both, first plug the disk drive into this opening, then plug the
printer cable into the back of the disk drive.

7 The Cassette Port
The Commodore 1531 Datassette tape recorder plugs in here.

8 The RS-232 Port ——————————
Accessories such as a modem or an RS-232 adapter plug in here.
An RS-232 adapter makes it possible to hook up accessories not ac
commodated by standard Commodore equipment ports.

9 The Memory Expansion Port
Plus/4 software cartridges and the Plus/4 SFS-481 disk drive plug in
here. Before you install or remove cartridges, make sure your Plus/4
is OFF.

10 Joy 1 and Joy 2 : The Game Ports
You can plug joysticks into these sockets. The Plus/4 uses specially
designed joysticks available from your Commodore dealer.

11 The Video Socket
This is where you plug in the cable that connects a monitor to your
Plus/4. Although this socket is an 8-pin connector, you can use a 5-pin
cable in this socket as well. Commodore color monitors come with an
8-pin cable for use with the Plus/4.

<••••••••••••••••••••••••

SETTING
UP

YOUR
PLUS/4

• To set up your Plus/4, you’ll need at least two wall plugs, one for your
Plus/4 and one for your TV or monitor.

• If you’re installing a disk drive and a printer, you'll need additional
wall plugs.

• Your Plus/4 should be placed a comfortable distance from your TV.

• Make sure that your computer is OFF before you start the setup.
Check that the POWER LIGHT on the front left is not lit.

If you are connecting the Plus/4 to a television set, you II need a
small screwdriver to attach the TV switchbox. The way you connect
the switchbox depends on what type of antenna connection your TV
set has.

IMPORTANT: If your antenna is connected to your TV by a single
round-ended cable (the 75-ohm co-ax type), you will need either
the 300 ohm to 75 ohm adapter, which came with your TV, or you
must get a replacement 75 ohm to 75 ohm switchbox. The adapter
is a small plastic part with a co-ax connector on one side and two
screws on the other. If you do not have one, you can buy one at
most electronics stores. Once you attach the adapter to the co-ax
connector on your set, you can follow the rest of these instruc
tions. A 75-ohm switchbox allows you to hook the antenna lead
into the switchbox, which is connected to the TV, so that you only
have to move the switch on the switchbox to watch TV.

You need only connect the switchbox once. When you want to use your
computer, just move the switch to the COMPUTER position. When you
want to watch TV, move the switch to TV. The switchbox will not
interfere with your TV reception.

13

S FEP 1. Disconnect the antenna from your TV: use a screwdriver to
loosen the screws on the TV. Remove the two antenna leads.

STEP 2. Connect the TV switchbox to the TV where the antenna leads
were, attach the leads on the box to the antenna input on
your TV.

STEP 3 Connect the antenna to the switchbox: attach the leads from
the antenna to the screws on the side of the switchbox.

If you have the round coax type antenna connection on your TV:
STEP 1. Disconnect the antenna from your TV: unscrew the antenna

wire. You can disconnect it by hand.
STEP 2. Connect the switchbox to your TV: hand fasten it onto the

antenna input post on the back of your TV.
STEP 3. (For the 75-ohm switchbox) Connect the antenna to the

switchbox, hand-turning the antenna cable into the
switchbox.

Selecting
A Channel

On Your TV

fW Connecting Your
- Commodore PLUS/4
 to a Monitor

Switchbox

Once the switchbox is in place, get the RF cable (the thin cable with
connectors on both ends) that came with your Plus/4. Plug one end into
the socket on the side of the switchbox. Connect the other end into the
socket marked RF on the left side of your computer.

NOTE: If you're using the 300- to 75-ohm adaptor and you want to
watch TV, you must disconnect the switchbox and plug the an
tenna lead back in. This is easily done by hand, and may be
done as often as you like, with no damage to your TV, computer,
or antenna.

As we explained earlier, your TV should be set on either channel 3
or 4 when you are using your computer. Don’t choose a channel that
broadcasts in your area. If you use channel 3, set the H/L switch on the
side of the computer to L. If you use channel 4, set this switch to H.

If you’re connecting your computer to a monitor instead of a TV, follow
the instructions in the manual that is included with the monitor. Hook
ing up a monitor, like the Commodore 1702 Color Monitor, is simple. It
reguires only one cable that connects directly from your monitor to
the VIDEO socket in the back of your computer.

15

Final
Steps

1. Attach the power supply cable from the power box to your Plus/4.
Plug the round end of the cable into the POWER socket on the
back of the computer; plug the power supply into the wall socket.

2. If you are using a TV, make sure that the setting on the H/L mod
ulator and the channel on your TV are in agreement. (If your com
puter is set at L, the TV must be on channel 3; the TV should be
tuned to channel 4 with your computer at H.) Make sure that the
switchbox is set to the COMPUTER setting.
If you are using a Commodore color monitor, use the rear jacks,
and check that the back/front switch is set to back.

3. Turn on your computer. (The switch is on the right side as you
face the Plus/4.)

If all is well, this message appears on your screen:

COMMODORE BASIC 3.5 60671 BYTES FREE
READY.

The flashing cursor under the READY message tells you that the
Plus/4 is waiting for you to start typing. The background color is
white, while the letters are printed in black, with a light purple
border around the screen.

4. Check the troubleshooting chart if you have problems. You may
need to adjust your TV set to get a sharper picture.

16

R

TROUBLESHOOTING
CHART

Symptom Cause Remedy

Indicator light
not ‘ON’

Computer not
turned ON

Make'sure power
switch is in ON
position

Power cable not
plugged in

Check power socket
for loose or discon
nected power cable

Power supply not
plugged in

Check connection
with wall outlet

Bad fuse in
computer

Take system to au
thorized dealer for
replacement of fuse

No picture TV on wrong
channel

Check other channel
for picture (3 or 4)

Incorrect hookup Computer hooks up to
VHF antenna terminals

Video cable not
plugged in

Check TV output
cable connection

Computer set for
wrong channel

Set computer for same
channel as TV

Switchbox not
set to computer

Check that switchbox
is in ‘computer’ position

TV not on Turn TV on

Random pattern
on TV with
cartridge in place

Cartridge not
properly inserted

Reinsert cartridge
after turning OFF
power

Picture without
color

Poorly tuned TV Retune TV

TV not connected Check connections
properly

R

Picture OK,
but no sound

TV volume too low Adjust volume of TV

Poorly tuned TV

Auxiliary output not
properly connected

Retune TV

Check connection as
shown on diagram on
page 14-15

If this is not possible, you can deal with the problem by pressing
the ESCape key, followed by the ‘R’ key. This reduces the com
puter screen display size so the entire picture can fit onscreen.
You must repeat this each time you power up or reset your Plus/4.

ut
te

tit
tto

tic
iti

ttt
et

tctditetttttrctcttrirtietit

PERIPHERALS Peripherals are the accessories that you can add to your Plus/4 sys
tem. These accessories are available at your Commodore dealer, and
allow you to use the Plus/4 to the fullest. Peripherals give your Plus/4
system the capability to store and save data, print hard copy (in black
and white or color), use disk and cassette-based software, and access
the information and services available through telecommunications.

To save or recall programs, you’ll need a device that stores data. Data
can be stored on and retrieved from both diskettes and cassette tapes.
To use diskettes, you’ll need a DISK DRIVE. Disk drives are typically
fast and efficient to use. Disk drives that are compatible with your
Plus/4 are the Commodore models 1541 and 1551. For cassette-based
storage and retrieval, the Commodore 1531 DATASSETTE tape
recorder fills the bill.

When using a wordprocessing program or a graphics package on the _
Plus/4, a printer will reproduce what is on the screen on paper. There
are several models of Commodore printers available that work with the —
Plus/4. These include the MCS-801, MPS-802, MPS-803 (with tractor
feed) and DPS-1101 (letter quality). Different printers specialize in dif- —
ferent types of print-outs. Ask your dealer which best suits your needs.

Your television may not give you as clear a picture as you'd like for your
computer. Commodore color monitors are specially designed to give
you the sharpest, brightest picture for your Plus/4 screen output. There —
are several Commodore monitor models available, including the 1702
and 1802/1803. ’ —

20

i c o cee •
e c c • • • c • e c • ce•• c c c co •

There are networks that you can reach over the phone whose purpose
is to provide information, programs, news, stock market reports, enter
tainment, and almost anything else you could think of to computerists
by using the phone lines. To gain access to the tremendous range of
services, software, and information available, you must be equipped
with a MODEM.

The Commodore Plus/4MODEM connects your Plus/4 to these
information services over telephone lines. With one of these modems,
you can have access to computer services such as CompuServe and
The Source. Commodore supports its own service called the Commo
dore Information Network, which is available through CompuServe.
The Commodore Information Network (CIN) specializes in information
for the Commodore owner, including current dealer lists, Commodore
hardware and software tips, and a direct line to Commodore Customer
Support. A wide assortment of programs is available on the Commo
dore User Database segment of CIN, including graphics, music,
educational programs, utilities and games.

 • c c o (c 1111 (111111 c cct m
t 111

CHAPTER 2
USING
THE
KEYBOARD
AND
THE
SCREEN
• A tour of the keyboard

• Special keys

• Graphic keys

• Programmable function keys

• The HELP key

A
TOUR

OF
THE

KEYBOARD

Most of the keys on the Plus/4 keyboard are identical to the keys on
a typewriter, but each key can do more than a typewriter key. In this
section, you’ll learn how to use special keys like the O key and the
cursor arrow keys. This section will show you the extra features of every
key, including how to use the graphic symbols pictured on the fronts of
many of the keys.

While we guide you on the tour of the Plus/4 keyboard, you should find
the keys and practice using them.

23

ta
tiM

ot
ta

tiM
iio

ot
si

ito
ot

o

SPECIAL RETURN
KEYS

You have to press the RETURN key at the end of each line of
instructions you enter on your Commodore Plus/4 keyboard. You might
think of this key as an ENTER key because RETURN actually enters
information and instructions into the computer.

SHIFT

This key works like the shift key on a regular typewriter. Your Plus/4 has
two SHIFT keys and a SHIFT LOCK , which works like the shift
lock on a typewriter.

By pressing the SHIFT key, you can get the graphic symbol on
the right side on each graphics key when you are in upper-case/
graphics mode.

Your Plus/4 is automatically in upper-case/graphics mode when you
turn it on. In upper-case/graphics mode, all the letters appear upper
case without the SHIFT key.

The SHIFT key pressed with a letter key gets upper-case (capital)
letters when you are in upper/lower-case text mode (the same as the

SHIFT key on a typewriter). When in this mode, the letters you type
are in lower-case except when you use the SHIFT key.

NOTE: You can go back and forth between upper-case/graphics
and upper/lower-case text modes by pressing the shift and

key at the same time-.

RUN/STOP

Press this key to break into a running program to STOP what your
Plus/4 is doing. When the Plus/4 is running a program, pressing this
key returns control back to you and the keyboard.

When you hold down the SHIFT and RUN/STOP keys simul
taneously, the Plus/4 loads and runs the first program on a disk in
the disk drive.

24

The
Cursor

Keys
It’s easy to move the cursor quickly around the screen in any direction.
Just press the cursor arrow key that points in the direction you want to
go. Like all keys on the Plus/4 keyboard, each cursor key can repeat
indefinitely while the key is held down. This automatic repeat function
keeps the cursor moving until you release the key.

NOTE: You can move the cursor over letters and numbers on the
screen without affecting those characters.

INST/DEL

You can INSERT and DELETE letters and numbers from the line
you are typing by pressing this key. When you press this key by
itself, that character immediately to the left of the cursor disappears,
and the cursor moves over to where the missing character was. You
can use the cursor keys to go back to the middle of a line and then use

DEL to DELete a letter. When you do this, the letter to the left is
deleted, and the rest of the letters on the line move over one space to
the left to close the gap.

You can open up space to insert letters and numbers by using the
SHIFT and INST keys. Space opens to the right of the cursor;

the cursor itself does not move. When you insert space in the middle of
a line of letters, the rest of the line moves to the right.

The INST/DEL key saves a lot of time when you want to edit
or change what you’ve typed.

This key serves three functions: HOME, CLEAR, and CLEAR
WINDOWS. When you press this key, the cursor immediately moves to
the top left corner of the screen. This is called the HOME position. The
rest of your screen stays the same. If you hold down the SHIFT key
and press CLR/HOME . not only does the cursor move to HOME,
but the screen clears. All that remains on the screen is the blinking
cursor at the top left corner of the screen. If you press this key twice,

25

any screen windows that you have set up are erased. Screen windows
are work areas that you designate on part of the screen; there’ll be
more about them later.

CONTROL

This key always works with another key. The CONTROL key works
like the SHIFT key: you must hold it down while you press the
other key.

1. As the COLOR KEYS section explains, pressing CONTROL
and a color key allows you to choose the color of the text printed on
the screen.

2. You can pause a program that is PRINTing or LISTing on the
screen by pressing control and the S key (press any key to
resume program output).

3. control IS also used with the REVERSE ON/OFF and
FLASH ON/OFF keys

In addition, some software programs that you buy make use of the
CONTROL key for their own special functions.

CX
Like the CONTROL key, the Commodore key works with other keys.
It has four functions:
1. When used with the SHIFT key, the (X key lets you switch

between upper-case/graphics mode and upper/lower-case
text modes.

2. When you’re in either mode, the 'JOI Ley acts as a shift to let
you type the graphics symbol pictured on the LEFT front of each
key. Just hold down G and press the graphic key you want.

3. When you want to change the color you are typing in to one of the
8 colors listed on the BOTTOM row of the face of the color keys,
press C' and the color key you want.

4. When you want to slow down a scrolling program display, hold
down the (X key. The display scrolling speed slows down
considerably. When you release the key, the screen scrolling
resumes normal speed. (Hey, it can do something by itself!)

26

The
Color
Keys

You can change the colors of the letters, numbers, and graphics
symbols on the screen to any one of the 16 colors available on your
Plus/4. It’s simple to do:

• If you want one of the 8 colors listed on the TOP row on the
front of the color keys (like BLK for black), just hold down the

CONTROL key and press the key with the color you want
at the same time.

• If you want one of the 8 colors listed on the BOTTOM row on
the front of the color keys (orange, for example), just hold
down the O key and then press the color key with the
color you want.

Practice changing colors to make sure you understand how to do this.
You’ll notice that after you change the color, every letter and number
typed AFTERWARDS is in the color you last chose.

REVERSE ON

REVERSE OFF

Your Plus/4 lets you print the reverse image of letters and numbers.
In other words, if you are using black letters on a yellow background,
you can use the reverse image keys to print yellow letters on a black
background.

Here’s all you do to get reversed images; Press the CONTROL key
and the RVS ON key. Now everything you type is displayed in
reverse until you press the CONTROL and RVS OFF , the

RETURN key, or the ESCape key and 0. This returns you to
typing normal (non-reversed) characters.

FLASH ON

FLASH OFF

You can make the characters on your screen flash continuously. Just
press CONTROL and the FLASH ON key to make whatever you
type flash. Typing CONTROL and FLASH OFF . RETURN , or

ESCape lets you type normal (non-flashing) characters again.

27

GRAPHIC
KEYS

As we mentioned before, when you turn on the Plus/4, it is in upper-
case/graphics text mode. When you’re in this mode, you can type the
full set of more than 60 graphics you see on the fronts of many of the
keys, as well as all upper-case letters without using the
key. The SHIFT key lets you type graphics in this mode, instead of
upper-case letters.

There are two graphic symbols on each graphics key:

• To print the graphic symbol on the right, hold down the SHIFT
key while you press the appropriate key.

• To print the graphic symbol on the left, hold down the Cs key
while you press the selected key.

You can create pictures, charts, and designs by printing graphics
side-by-side or on top of each other, like building blocks. Try printing
some of the graphics keys to see how they work. Chapter 7 explains
more about graphics.

You can switch between upper-case/graphics mode and upper/lower-
case mode by pressing the MHHMB and MB keys at the same
time. In either mode, type BASIC commands without holding down the

SHIFT key.

In this mode, you can type upper- and lower-case letters, just like a
regular typewriter. (You will have to shift for upper-case letters.) You
also can use the graphic characters on the left front of the keys, which
print as in upper-case/graphics mode; hold down O and press
the graphic key. The left side graphics are ideal for creating charts,
graphs, and business forms.

ESCAPE
The Escape key lets you perform many special screen edit
ing functions, including functions utilizing the windowing capability of
the Plus/4. Windows are areas of the screen (defined by you) that may
be used as work space without affecting the rest of the screen. The

Escape key can perform several window editing functions,
as well as many other regular uses, such as inserting, deleting,
and scrolling.
The , Escape key is typically used with standard alphabet keys. To
activate a function, press the Escape key followed by one of the
keys listed below:

28

A Automatic insert mode
B Set the bottom right corner of the screen window

(at the current cursor location)
C Cancel automatic insert mode
D Delete current line
I Insert a line
J Move to the beginning of the current line
K Move to the end of the current line
L Turn on scrolling
M Turn off scrolling
N Return to normal screen display size
O Cancel insert, quote, reverse, and flash modes
P Erase everything up to the cursor position on the current line
Q Erase everything up to the end of the current line from

cursor position
R Reduce screen display
T Set the top left corner of the screen window
V Scroll screen up
W Scroll screen down
X Cancel the escape function

Special Symbols
The Plus/4 keyboard also contains special symbols not found
on many typewriters, or even on most computers. These special
symbols include the English pound sign (£), pi (77), greater and less
than signs (< >), brackets ([]), and arrows (f). These special sym
bols keys are used in programming your Plus/4.

29

(fi
iie

ee
iii

ite
iii

ei
ei

iii
i

(
C t I (t (t C { ((t t t C (t f ((t C ({

PROGRAMMABLE
FUNCTION

KEYS
F2/F5 1 H F3/F6 HELP/F7

The four keys at the top of your keyboard are special function keys that
let you save time by performing repetitive tasks with the stroke of just
one key.

You can display what each key does by typing KEY and pressing
RETURN.

The screen displays:

KEY
KEY 1,“ GRAPHIC”
KEY 2,“DLOAD” + CHR$(34)
KEY 3, “DIRECTORY”+ CHR$(13)
KEY 4,“SCNCLR” + CHR$(13)
KEY 5,“DSAVE”TCHR$(34)
KEY 6,“RUN” + CHR$(13)
KEY 7,“LIST” + CHR$(13)
KEY 8,“HELP” + CHR$(13)

Here’s what each key does:

KEY1

KEY 2

KEY 3

KEY 4

KEY 5

KEY 6

enters one of the GRAPHICS modes when you supply the
number of the graphics area (e.g., GRAPHICS 2, which is
split screen, high resolution mode) and a return j . On
computers with built-in software, KEY 1 is redefined so that
pressing it activates the software package.

prints DLOAD ” on the screen. All you do is enter the
program name to load a program from disk and hit
MMMMB instead of typing out DLOAD yourself.

lists a DIRECTORY of files on the disk in the disk drive.

clears the screen (even in one of the graphics modes.)

prints DSAVE ” on the screen. All you do is enter the
program name to save the current program on disk and
press RETURN

RUNs the current program.

30

KEY 7 displays a LISTing of the current program.

KEY 8 (the HELP key) highlights errors in program statements
in flashing print.

To use one of these functions, just press the appropriate function key.
You need to use the SHIFT key to get FUNCTIONS 4, 5, 6, and 7.

You can redefine any of these keys to perform a function that suits
your needs. Redefining is easy, using the KEY command. You can
redefine the keys from BASIC programs, or change them at any time
in direct mode. (The new definitions are erased when you turn off your
Plus/4.) You can redefine as many keys as you want and as many times
as you want.

31

THE
HELP

KEY
When you make an error in a program, the Plus/4 displays an error
message to tell you what you did wrong. These error messages are
further explained in Section 4 of the Plus/4 Encyclopedia in the second
half of this manual.

You can get more assistance with errors by using the HELP key.
After an error message, press HELP to locate your error. When you
press HELP , the line with the error is displayed on the screen with
the error flashing on and off. For example:

HELP

10 PRONT “COMMODORE
COMPUTERS’’

2SYNTAX ERROR IN
LINE 10

32

• 1
 1

J 3
 1

J 1
 3

3 1
 3

J 1
 1

3 1
 >

1 1
 1

1 1
 1

1 3
 >

1

CHAPTER 3
USING
SOFTWARE
• Introduction

• Built-in software

• Cartridges

• Cassettes

 • Diskettes

INTRODUCTION The family of software available for your Plus/4 is growing quickly. Your
dealer can keep you up-to-date on new products and inform you about
the features of software that's currently available.

Your Commodore Plus/4 can use software on CARTRIDGE, CAS
SETTE TAPE and DISKETTE form, available from your Commodore
dealer. All you do is load them into your Plus/4. You can also create
and store your own programs on cassette tapes or floppy disks.

BUILT-IN
SOFTWARE

Your Plus/4 is equipped with built-in software packages. These are
programs built into the Plus/4, turned on by pressing the appropriate
FUNCTION key. Your Plus/4 built-in software makes your computer a
word processor, database, spreadsheet and graphics machine. A
built-in package is ready to use whenever you power up your com
puter. When you turn on your Plus/4, the screen message tells you
which packages are available and what function key to use to activate
them. Also, you can use the KEY command to see the function key
definitions. If there is function key software built into your Plus/4, the
definition for KEY 1 will be: SYS XXXXX:package name. Just press
FUNCTION KEY 1 and press MHMHi to activate the program.

34

CARTRIDGES
Loading

Cartridges

Commodore produces a full assortment of cartridge software for
your Plus/4. There is a variety of personal, education, and business
programs, as well as exciting games available on cartridge for your
Plus/4. Follow these steps to use cartridges:

STEP1 Turn OFF your Plus/4.

IMPORTANT: YOU MUST TURN OFF YOUR COMPUTER
BEFORE YOU INSERT OR REMOVE CARTRIDGES. IF
YOU DON’T, YOU MAY DAMAGE THE CARTRIDGE AND
THE COMPUTER

STEP 2 Hold the cartridge with the label facing UP, and insert
the cartridge firmly in the cartridge slot into the back of
your computer.

STEP 3 Turn ON your Plus/4.

STEP 4 Begin the game or program according to the instructions
that come with the software. A cartridge program starts
immediately, while function software starts after pressing
the function key.

35

CASSETTES
Loading
Cassette

Tapes

A variety of software products for the Plus/4 is available on cassette
tape. These cassette tapes are similar to the music cassettes that you
play on your tape deck or stereo. Computer tapes run in the Datassette
tape recorder, available from your Commodore dealer.

You can also use cassette tapes and the Datassette to store programs
you write yourself. The next section explains how to save programs
on tape.
The steps for loading tape are the same whether you are using
prerecorded software or programs you saved yourself.

STEP 1 Insert the cassette into your Datassette and close the door.

STEP 2 Rewind the tape to the beginning by pressing the REWIND
button on the Datassette.

STEP 3 When the tape is rewound to the beginning, type LOAD and
press the RETURN key. The computer responds with the
following message:

PRESS PLAY ON TAPE

STEP 4 Press the PLAY button on the Datassette. The screen goes
blank as the Datassette starts. When a program is found,
the screen displays this message:

FOUND “program name”

STEP 5 Press the Commodore key to load the program that was
FOUND. If there is more than one program on the tape, and
the program the Plus/4 found isn’t the one you want, press
the space bar to keep searching.

36

When the program is loaded, the word READY appears. If you want to
stop the loading before it’s complete, press the RUN/STOP key.
After the software is loaded, type RUN to start the program. You can
also LIST the program or change it, if it is a BASIC program.

NOTE: To LOAD a specific program on the tape, use the LOAD
“program name” form of the LOAD command.

Saving
Programs

Cassette
Tape

When you write a program and want to save it on cassette tape, follow
these steps:
STEP 1 Type:

SAVE “program name”

STEP 2

The program name you use can be anything you want,
but can be no more than 16 letters and/or numbers long.

Press the key. The computer displays
this message:

PRESS RECORD AND PLAY ON TAPE

STEP 3 Press the RECORD and PLAY buttons on your Datassette.
The screen goes blank. When your program is saved, the
word READY appears on the screen.

Examples of SAVE Commands for Cassette Tape:

SAVE “MYJOB”

SAVE “3TEST”

■ This name is the
specific name of the

■ program being saved

NOTE: When saving a program onto a cassette tape, always
be aware of where the tape is positioned. In particular, be care
ful not to save a program at the absolute beginning of a tape,
since many tapes have magnetic leaders, which will not record
information. Thus, part of the program would not be saved.

When LOADing or SAVEing a program, if you decide to stop before
it’s finished, you must press the RUN/STOP key first. After pressing
RUN/STOP on the keyboard, then press the stop button on the
Datassette.

37

DISKETTES
Loading

Programs
From

Diskette

Disks are fast and easy to use. Be sure to handle your disks and your
disk drive carefully. Disks may be referred to as diskettes, floppy disks,
or floppies interchangeably; they are all the same thing.
The steps are the same for loading all disks:

STEP1

STEP 2

STEP 3

STEP 4

Make sure that your disk drive is ON.

Insert the disk into the disk drive. The label side of the disk
must face up. Insert the disk into the opening so that the la
beled end goes in last. Look for a little notch on the side of
disk (it might be covered with a sticker). This notch should
be the left side as you put in the disk, assuming that you’re
facing your disk drive. Be sure the disk is in all the way.

Close the protective door on the disk drive after you insert
the disk.

Type:

DLOAD “program name”
Specific name of the
program to be
LOADed

To save time, you could press FUNCTION KEY 2 and type in
the program name and the second quote marks.

STEP 5 Press the RETURN key. The disk spins and your
screen says:

38

9

9
9
9

9

fll

SEARCHING FOR PROGRAM NAME

LOADING

READY

STEP 6 Your software is ready to use. Now type RUN and press the
RETURN key to start the program.

If the red light on the disk drive blinks after the DLOAD is finished,
something went wrong. Type:

?DS$ (and hit RETURN)

to find out what went wrong.

Examples of DLOAD commands:

DLOAD “*”

DLOAD “MYFILE”

DLOAD “SET*”

DLOAD “$”

LOADS the 1st
program on the disk.
LOADS a disk
program called
MYFILE.
LOADs the first
program on the disk
that begins with the
letters SET.
LOADs the directory,
a listing of all the
programs on the disk
in the drive.

Headering
A

Diskette

Headering prepares a new BLANK disk for use. Any blank disk must
be formatted before it may be used, by using the HEADER command.

IMPORTANT: DO NOT HEADER A DISK THAT HAS ANYTHING
ON IT UNLESS YOU WANT TO ERASE THE ENTIRE DISK.
HEADERING ERASES EVERYTHING ALREADY ON A DISK.

39

The format for the HEADER command is:

HEADER “disk name”, Udevice#, Ii.d.#,Ddrive#

• The name you use is the name of the entire disk. Give the disk
any name up to 16 characters.

• Device # specifies which device for your computer (disk drive
as opposed to Datassette), and is usually number 8.

• The i.d. is the letter I and any two letters and/or numbers, like 121,
IR5, etc. Give the disk any i.d. you want, but you should give
every disk a different i.d. to avoid confusion.

• If you have a dual drive, add DO or D1 to identify the drive
number. If you have a single drive, you must use DO.

ARE YOU SURE?

As soon as you press RETURN after typing the HEADER command,
the Plus/4 asks ARE YOU SURE? This is to give you a last chance to
change your mind.

To header the disk, type YES or Y and press RETURN . If you
decide not to header the disk, type NO or N and press RETURN

Here are some examples of HEADER commands:

Saving
Programs

Diskette

HEADER "LETTERS”, U8,107,D0
HEADER "FINANCES”, U8,IS3,D0

Now that you know how to HEADER a disk, you’re ready to use disks to
write and save programs on your Plus/4. The first section of the Plus/4
Encyclopedia has more information about the HEADER command.

When you want to reuse a program you've written, be sure to SAVE it
before you LOAD another program or turn off the Plus/4. If you don’t,
you’ll lose the program.

When you change a SAVEd program, you have to save it again if you
want to keep the new version.

When you reSAVE a program, you are replacing the old version with

40

tM
iiioM

iH
M

M
iM

tiataim

iitttctrtcttK
ttittf tittctfi

the new one. If you want to keep both the old and the changed
versions, you have to give the new one a different name when you
SAVE it.

Follow these steps to save a program on disk:

STEP 1 Type DSAVE “program name’’.

STEP 2 Press RETURN . The computer displays this message when
the program is saved:

SAVING “program name’’
OK
READY.

Example:

DSAVE “MYPROG5”
The program name
can be upto 16
characters long.

If the red light on the disk drive blinks after the DSAVE is finished,
something went wrong. Type:

?DS$ (and hit RETURN)

to learn what went wrong.

THE
DIRECTORY
COMMAND

When you SAVE programs on disk, the computer keeps a listing of all
the files saved on that disk. You can display the listing as a table of
contents to see what’s on a disk by using the directory command:

Type: DIRECTORY then press RETURN
(or press FUNCTION KEY 3)
As soon as you press RETURO > your Plus/4 displays every
thing on your disk.
You can also display just part of the table of contents:

DIRECTORY “MY*” RETURN Lists every file on the disk that
starts with the letters MY.

tit e t • ci t e
. t c c e o c c o c c c c c o ee

CHAPTER 4
GETTING
STARTED
• Keyboard colors

• Color and reverse printing

• Some simple programs

• Correcting typing mistakes

• Introduction to the Plus/4 screen

• More about PRINTing on the screen

• Screen windows

42

INTRODUCTION The purpose of this chapter is to begin to acquaint you with some of the
characteristics and capabilities of the Plus/4, and how to take the first
steps toward programming with your computer.

43

KEYBOARD
COLORS

You can change the color of the characters on the screen to improve
readability or to find a color combination you like. To see how the differ
ent color characters look on your screen, try this:

STEP 1 Hold down the CONTROL key.
STEP 2 Press the 6 key while you’re holding the control

key down . The cursor turns green.

STEP 3 Let go of CONTROL and type some letters. Everything
you type appears in green now.

Using the control key with the number keys 1 through 8 allows
you to choose the colors shown on the top of each color key.

HOLD COLOR
WITH COLOR KEY RESULT

1 BLACK
2 WHITE
3 RED
4 CYAN
5 PURPLE
6 GREEN
7 BLUE
8 YELLOW

Now hold down the G key. By typing on the keys between
1 and 8, the cursor changes one of the 8 colors printed on the bottom of
each color key. All 16 colors can appear on the screen at the same time.

HOLD O
WITH COLOR KEY

1~
2
3
4
5
6
7
8

COLOR
RESULT
ORANGE
BROWN
YELLOW-GREEN
PINK
BLUE-GREEN
LIGHT BLUE
DARK BLUE
LIGHT GREEN

44

COLOR
AND

REVERSE
PRINTING

Your Plus/4 can display numbers, letters and graphic symbols in the 16
different colors. You can also display these characters in reverse, with
the primary (cursor) and background colors reversed.

STEP 1

STEP 2

Clear your screen by pressing SHIFT and
CLR/HOME

Hold down the CONTROL key and press the
RVS ON key

STEP 3 Release the keys and hold down the space bar (the long
bar at the bottom of the keyboard).

STEP 4 Hold down the space bar as long as you want. While you
hold down the space bar, a line the same color as the letters
on your screen should get longer. If the line gets to the end
of the row, it continues on the next row.

STEP 5 Release the space bar (but don't press the
RETURN key).

STEP 6 Hold down the control key and press one of
the color keys (not a color that’s already on your screen).
As soon as you do this, the cursor will be the color of the
key you pressed.

STEP 7 Hold the space bar down again. Now your Plus/4 will draw
a line in the new color. Continue changing colors with the

CONTROL or C* keys and the color keys.
Then hold down the space bar to make different colored lines.

STEP 8 Turn off reverse print by holding down CONTROL
and pressing the RVSOFF key. Pressing the
SHBURN key also turns off reverse printing.

Try typing some letter in reverse. Just hold down CONTROL and
RVS ON to turn on reverse, and then type whatever you want. Reverse
letters make excellent headlines. You can also use them to highlight

45

(((tirdC
K

ticctrtcrttcccctt

special words and numbers. Try this:

PRINT" R COMMODORE B PLUS/4”

t
Press CONTROL
and RVS ON

Press CONTROL
and RVS OFF

Now try the same line, replacing reverse on and off with FLASH ON
and OFF:

PRINT" H COMMODORE H PLUS/4”

♦
Press CONTROL
and FLASH ON

Press CONTROL
and FLASH OFF

Both functions may also be used on the Plus/4 as part of a
program statement.

SOME
SIMPLE
PLUS/4

PROGRAMS

Type this program exactly as it appears here. Don’t leave out the
numbers at the beginning of the line, since they are the line numbers
that tell the order that the lines of the program are implemented by your
computer. Be sure to press the key at the end of each line
you type.

10 PRINT“PLUS/4”

20 GOTO 10

RUN

This line tells your
computer to PRINT
Plus/4 on the screen.

This line tells your
computer to go back
to line 10 and print
Plus/4 again.

This commands your
computer to carryout
what the 2 lines tell it
to do.

Press the run/STOP key to stop the program.
Why did your Plus/4 print its name so many times? GOTO tells your
computer to go back to line 10 and PRINT Plus/4 again and again.
This repetition is called a loop.

Now type this:

NEW RETURN

Here you tell the
computer to forget
the last program
and get ready for
a new one.

The computer responds:

READY.
You DON’T type this;
your Plus/4 does to
tell you it’s READY
for a new program.

47

• oonoooeoosooteosoootoooaioo

20 COLOR 0,12

10 PRINT“PLUS/4”

RUN

CORRECTING
TYPING

MISTAKES

This time there's no GOTO loop in the program, so your orders are
carried out just once.

If you make a mistake when you’re typing, there are several ways to
make changes.

1. YOU CAN RETYPE A LINE anytime, even after you’ve RUN the
program. The Plus/4 automatically replaces the old line with the
new one when you press RETURN to enter the new line.
The old line still appears on the screen, but the Plus/4 ignores it.
When you have two statements with the same line number, your
Plus/4 uses only the last one entered. For example, in a brief
program using the COLOR command to change the color of the
screen background, a mistake might occur:

10 COKORO.3
20 PRINT “PLUS/4”

mistake

Press the return key to get to a fresh line, and just retype line
10 correctly:

10 COLOR 0,3 RETURN

Now the first line 10 is replaced by the second line 10. You can
check this by typing LIST, which displays a line-by-line LISTing of

48

your program as it is stored in the computer’s memory. When you
LIST a program, all lines appear in correct order and the replaced
lines don’t appear:

LIST RETURN

The screen reads:

10 COLOR 0,3
20 PRINT “PLUS/4”

Replacing lines in a program is also a good way to experiment with
your computer. When you replace aline, the new one doesn’t have
to be anything like the old line. For example, instead of correcting
the spelling of COLOR, you can type this:

space
10 PRINT “TEN IS SIX ’’

MHHHM
Now RUN the program and see what happens.

2. YOU CAN ERASE AN UNWANTED LINE just by typing the
number of the line and pressing RETURN . The computer
ignores the line even though it still appears on the screen.
Type LIST to get the program LISTing to make sure the line
is gone from the program.

10 PRINT “TEN IS SIX’’
20 PRINT “PLUS/4”
10
LIST

20 PRINT “PLUS/4”

RETURN

RETURN

RETURN
RETURN

3. YOU CAN EDIT A LINE. Use the cursor keys to move to the place in
the line that you want to change. Now just type over what you want
to change. Press RETURN when you finish.

49

rarerctfcccccectcocecetccrea

th numbered program lines, you don’t
he line to press RETURN .

s the whole line even if you press
in the middle of the line.

NOTE: When wo:
have to be at the
Your Plus/4 re

10 PRINT “IT IS ONE O’CLOCK’’

If you want to change the time to TWO, move the cursor to the
O in ONE.

10 PRINT “IT IS NE O’CLOCK’’

And now just type TWO over ONE and press RETURN

10 PRINT “IT IS TWO O’CLOCK’’ RETURN

NOTE: When you type a quotation mark after a PRINT statement,
you enter QUOTE MODE. In quote mode, some keys work dif
ferently. For example, if you press the cursor-down arrow while
you’re in quote mode, the cursor won’t move and you’ll see a
reverse Q printed on the screen. When you run the PRINT state
ment, the reverse Q isn’t PRINTed; instead the cursor moves
down. In quote mode, the computer assumes that everything
you type is something you want to display or do later when
you execute the PRINT statement.

4. YOU CAN OPEN UP SPACES IN A WORD OR LINE with
the INST key (get this insert key by holding down

SHIFT while you press INST/DEL). Hold the
keys down until you open up as many spaces as you need.
(Notice that the cursor stays in the same place while spaces
open up to the right.) Then just type what you want to insert.

10 PRINT “CORE’’ RETURN
To change this to COMMODORE-Plus/4, move the cursor to the
hyphen between the C and the O and press the SHIFT and

INST keys until enough space opens up. Don’t bother to
count out the spaces. You can just guess and then open up more
if there aren’t enough.

50

A
Little

Longer
Program

10 PRINT “C ■ORE”
'—■ cursor

Now add the other letters:

10 PRINT “COMMODORE” RETURN

5. YOU CAN ERASE CHARACTERS AND CLOSE UP SPACE
with the DEL f key (get this delete key by pressing

INST/DEL). This key erases characters or spaces
immediately to the LEFT of the cursor.

10 PRINT “AFTERNOON SCHEDULE” RETURN

You can change this to WEEKLY SCHEDULE by moving the cursor
to the E in AFTERNOON, pressing the INST/DEL key three
times, and typing WEEKLY

10 PRINT “AFT E RNOON SCHEDULE”

and press INST/DEL three times.

10 PRINT” E RNOON SCHEDULE”

Type in WEEKLY to
replace ERNOON
and press '' RETURN

Now that you’ve experimented a little with your Plus/4, here’s a pro
gram to try that will take a little longer to type in. (Any experienced
programmer will tell you that, if nothing else, programming can help
you really improve your typing.)

First, clear the screen by holding down the SHIFT key while
you press the CLR/HOME key. This erases your screen.
Then, clear out old programs from memory by typing NEW and
pressing RETURN .

Type in this program exactly as it appears. Remember to type in the
line numbers and all punctuation marks. Use the tips for correcting
mistakes if you type something incorrectly. Don’t forget to press

RETURN after each line.

NOTE: Remember, you can stop a program by pressing the
I RUN/STOP key.

51

I)••••••••••••••••••••••••
I

ccccccctccectcccccctcfcfctrr
THE

PLUS/4
TEXT

SCREEN

NEW

10 COLOR 1,8

20 PRINT “A FUNNY THING HAPPENED

30 COLOR 1,3
Be sure to leave a
space here

40 PRINT “ON MY WAY TO THE KEYBOARD ”

Be sure to leave a
50 COLOR 1,7 L space here

60 PRINT “ VVVVVV ”

70 GOTO 60

RUN

Get the hearts
by holding down

SHIFT
while you press
the S key 6 times

After you STOP the program (by pressing the RUN/STOP key), try
typing LIST. When the program is displayed on your screen, recall the
tips for correcting errors and try changing this program to make it say
something more profound.

TIP: Want to slow down this program without stopping it? Just
hold down the H key.

Try typing this program. (Don’t forget to press RETURN after entering
each line.)

NEW

10 PRINT" V press SHIFT
and S

20 GOTO 10

RUN

Now your screen fills with hearts. When the entire screen is covered
with hearts, press the RUN/STOP key to end the program.
This program shows you how big your Plus/4’s screen is.

Now type this program:

NEW

10 PRINT “
and CLR/HOMESHIFTpress

20 FOR X = 1 TO 40

press SHIFT and S
30 PRINT “V ”

40 NEXT X

RUN

When you RUN this program, the first row on your screen fills completely
with hearts. There are 40 hearts altogether. Since the row is full, you
can see that there are 40 positions across the screen. Each position
across the screen is called a COLUMN.

Now type this program:

NEW

10 PRINT “Q ”
press SHIFT and CLR/HOME

20 FOR X - 1 TO 25

30 PRINT “ press SHIFT and Z

40 NEXT X

53

RUN

When you run this program, the first column on your screen fills with
diamonds. There are 25 diamonds printed, but the first three disappear
at the top of the screen because the word READY surrounded by two
blank lines always appears at the end of the program. There are, then,
25 rows. A little deductive logic tells you that your Plus/4 has 40 col
umns and 25 rows. The Plus/4 has 1000 different positions on the
screen for letters, numbers, graphic symbols, etc.

NOTE: Sometimes you’ll type a particularly long line on your
Plus/4, such as this:

10 PRINT “I LIKE YOUR TOUCH ON MY KEYBOARD. DO YOU
COME HERE OFTEN?’”

(That’s quite a line—over 50 characters long!)

You’ll notice that as you type this, you run out of room on one row.
But keep typing; the Plus/4 automatically moves on to the next row
and continues printing there until your line is finished. You can type
as many as 80 characters on one program line (up to two full rows).

Now try RUNning this one line program. The message is printed on
two rows. If your line is longer than one row, the Plus/4 lets it spill over
to the next row. The Plus/4 considers the line ended when you press
the RETURN key, not when you type to the end of the row.
You’ll get used to this as you use your Plus/4.

When you RUN this program, you can see that it’s possible to tell the
Plus/4 exactly where to PRINT something on the screen.

54

MORE
ABOUT

PRINTING
ON

THE
SCREEN

Try typing this program:

NEW
10 PRINT “A”,“B”
20 PRINT “A”;“B”
RUN
Here’s how the screen looks:

A

AB

line 10 PRINTed this

line 20 PRINTed this

If line 10 and line 20 are nearly identical, why is there such a difference
in what they PRINT on the screen? The difference is in the punctuation
between the items this program PRINTS.

When you use a comma to separate items in a PRINT statement, the
items are PRINTed several spaces apart.-When you use a semicolon,
the items are PRINTed right next to each other.

As you recall, the Plus/4’s screen has 40 columns across. These
columns are divided into four 10 space areas, called PRINT ZONES.
When you use a comma to separate PRINTed items, the Plus/4 prints
the first item in the first print zone, the second item in the second print
zone, etc. The commas work like tabs on a typewriter.

PRINT ZONE 1 PRINT ZONE 2 PRINT ZONE 3 PRINT ZONE 4

I 1 I I I I I I
1 2 34 56 7 89 1011 12 1314 15 16 17 18192021 222324252627 28 293031 323334353637383940

A B

If you try to PRINT more than four items separated by commas, the
Plus/4 automatically goes to the next line to PRINT. For example:

PRINT “A”, “B”, “C”, “D”, “E”, “F”

spaces the letters like this on your screen:

1 11 21 31 COLUMN
ROW 1 A B C D

2 E F
When you use semicolons to separate items in a PRINT statement,
the Plus/4 ignores the print zones and PRINTS all the items one
after another:

PRINT “A”, “B”, “C”, “D”, “E”, “F”

PRINTS this:

ABCDEF

Here’s what happens if the first print item is 12 letters long and the
second item is separated by a comma:

PRINT “ABCDEFGHIJKL”, “M”

PRINTS this:

ABCDEFGHIJKL M

print print
zone 1 zone 2

print
zone 3

Now clear your screen and type this program:

NEW
10 PRINT 1,2
20 PRINT 1;2
RUN

1 2
1 2

This program shows you two new things:

1. Numbers don’t have to be put in quotes in a PRINT statement.

2. Numbers are displayed with a space on both sides of them, so when
you use a semicolon, the numbers aren’t PRINTed right next to each
other the way letters are. The space allows for minus signs to go in
front of negative numbers when needed.

56

SCREEN
WINDOWS

Windows let you define a specific area of the screen as your
workspace. Everything you type (lines you type, LISTings of pro
grams, etc.) after setting a window appears within the window’s
boundaries, not affecting the screen outside the window area.
You can set up a window anywhere on the screen.

To set a window, follow these steps:
1. Move the cursor to the screen position you want as the

top left corner of the window.
2. Press the ESCape key, and then the letter T.
3. Move the cursor to the position you want to be the

bottom right corner of the window.
4. Press ESCape, followed by B. Your window is now set.

All screen output is confined to the ‘box’ you have defined. To cancel
the window, press the home key twice. The window is then erased, and
the cursor is positioned in the top left corner of the screen.

57

• c c c • c c o c c r c c c ® 11 e c c t• c c e • c
<

CHAPTER 5
NUMBERS
AND CALCULATIONS
• Numbers and basic operators

• Performing calculations

• Using variables

• Immediate mode

• Numeric functions

• Random numbers and other functions

58

NUMBERS
AND

BASIC
OPERATORS

You can use your Plus/4 like a simple calculator. Besides the standard
+ and - signs, your Plus/4 uses the *sign for multiplication and the I
sign for division and fractions. (Computers use the * sign instead of an
X for multiplication because a computer can’t tell the difference be
tween the letter X and the mathematical symbol x.) You can use these
operators and numbers in direct mode (no line numbers) or in a pro
gram. Neither numbers or operators should be in quotes for your Plus/4
to perform mathematical operations.

BASIC MATHEMATICAL
OPERATORS _____
Addition +
Subtraction -
Division and fractions I
Multiplication *
Exponentiation f

BASIC RELATIONAL
OPERATORS
Greater than >
Less than <
Equals =
Greater than or equal =>
Less than or equal < =
Not equal to <>or><

FRACTIONS
AND

DECIMALS

NOTE: Your Plus/4 doesn’t accept commas as part of a number.
For example, you must type 109401 instead of 109,401. If you put
a comma in a number, your Plus/4 thinks you mean two numbers
(separated by the comma), so your Plus/4 would read 109 and
401 instead of 109401.

You can write a fraction like this: .5
or like this: 1/2 Your Plus/4 is

actually performing
the division

If you put a fraction in a PRINT statement, your answer is always
returned as a decimal or whole number. For example:

PRINT 139/493 + 5
5.28194726

RETURN

Here’s an example that uses pi (3.14159256...), which represents the
ratio of the circumference of a circle to its diameter. Use this value by
just pressing the tt key:

PRINT tt/374
8.39998036E-03

RETURN

59

SCIENTIFIC
NOTATION

What did your Plus/4 mean by the E-03 part of the above answer?
Your Plus/4 displays decimal numbers in the range -999,999,999 to
999,999,999 in standard numerals. Numbers beyond this range (with
more than nine digits) are automatically displayed in scientific notation
You can enter numbers in yourself in this form and your Plus/4 will read
them with no trouble (certainly less trouble than you had converting
them). Scientific notation is often useful, since this special notation lets
your Plus/4 display large numbers in fewer digits.

Here is how the number 198,505,478 would be written in scientific
notation:

For a number less than one with several decimal places, the second
number would be a — instead of a +, indicating that the decimal point
is moved to the right.
For example:

.0003359 = 3.359E - 4

Other examples:

20 = 2E + 1
105000 = 1.05E + 5

.0666 = 6.66E - 2

the decimal point is moved 1 digit left
the decimal point is moved 5 digits left
the decimal point is moved 2 digits right

60

PERFORMING
CALCULATIONS

To perform a calculation, type PRINT and then the math problem.
Remember not to put the problem in quotes.
Type this program:

NEW
10PRINT 1+2, 2-1
20 PRINT 2*2, 4/2
RUN
3 1
4 2

use the slash on the ? key

For the first time, PRINT didn’t print exactly what you typed in the
statement. Instead, your Plus/4 solved the calculations and PRINTed
the answers. All you have to do to use PRINT to calculate is omit the
quotation marks. Now try this:

NEW
10 PRINT “2001/2010”
20 PRINT 2*3
RUN
2001/2010 __

6 —

one space is left
for the answer’s sign

Since the calculation in line 10 is in quotes, your Plus/4 just PRINTS the
problem as if it were regular text: exactly as it appears between the
quotation marks. The problem isn’t solved, and no space is left for the
sign of the number.

Now move the cursor back to line 10 and change the line to this:

10 PRINT “2*3 +1 = ” ;2*3 +1

RUN

don’t forget the semicolon

this space is left for
the answer’s sign

the answer for line 20
stays the same

If you want to both PRINT the problem AND solve it you have to type it
twice: once in quotes and once out of quotes, like this:
10 PRINT “2 + 2 = 2 + 2

61

IMMEDIATE
MODE

You can put any calculation in a program, or get an immediate answer
by typing PRINT and the problem without a line number and pressing
RETURN, like this:

PRINT 3-6
-3
PRINT 24/(6+ 2)

3

With numbers as well as with commands and text, when you don’t have
a line number before a BASIC statement, you don’t have to type RUN to
tell the computer to follow the instruction; it’s in IMMEDIATE, or DIRECT
MODE. Having a line number means the statement is part of a BASIC
program; it’s in PROGRAM MODE. Either way is acceptable.

You can also include both a text statement in quotation marks and a
mathematical problem to be solved in a single PRINT statement in
immediate mode.

ORDER
OF

CALCULATION

The second example in the last section shows that you can perform
more than one calculation in one line. Try typing this:

PRINT 200 + 50/5

Is the answer what you expected9 Try this:

PRINT (200 + 50)/5

Your Plus/4 always performs calculations in a certain order. Problems
are solved from left to right; within that general rule, some types of
calculations are solved first. The order which your Plus/4 evaluates
expressions is called the order of precedence of operators.

62

FIRST: Your Plus/4 checks for negative numbers (not subtraction,
just negative numbers).

SECOND: Your Plus/4 solves any exponents.

THIRD: Your Plus/4 solves all multiplications and divisions, from left
to right.

FOURTH: Your Plus/4 solves additions and subtractions, from left
to right.

NOTE: Your Plus/4 always solves any portion of the problem
surrounded by parentheses first. You can even put parentheses
within parentheses: 36 * (12 + (A / 3)). The contents of the inner
most parentheses are solved first.

Sometimes it’s a good idea to put negative numbers in parentheses
for clarity. For example, if you want to multiply 45 by -5, type it like this:
45*(-5). Your Plus/4 can understand with or without parentheses.

11
11

11
11

(1
11

11
11

10
11

11
11

11

• ••••€>•*• •••••••*•••• *•••£••

USING
VARIABLES

The example 36*(12+(A/3)) shows one of the most powerful features
of a computer. When we used a letter instead of a number in a mathe
matical problem, we used a VARIABLE. A variable represents a value:

10 A = 3
20 PRINT “TOTAL:”; A* 4
If you RUN this program, the screen result is:
TOTAL: 12
There are three types of variables you can use:

TYPE SYMBOL DESCRIPTION
SAMPLE

EXAMPLES VALUES
Floating
point

real (decimal)
or whole numbers

X, AB, T4 23.5, 12,
1.3E + 2

Integer O/ /o whole numbers X%, Al% 15, 102, 3

Text string $ letters, numbers,
and all other
characters
in quotes__

X$, MS$ “TOTAL:”,
“DAY 1”, “CBM"

Every time you want a variable to be an integer variable, the symbol
for that variable would include the % sign. A variable that contains text
MUST end with a $ as part of the variable. If it doesn’t have that symbol,
your Plus/4 considers it a floating point number. A variable without
either of the symbols (% or $) is read as a floating point number (a
“regular” number). Integer variables are a subset of floating point vari
ables; they are numbers with no decimal places.

Always use the right variable type. If you try to do something like assign
a word to an integer variable, your program won’t work. This program
shows you what variable can or can’t be used in a given situation, and
you can find out what happens when you try out different types of data:

10 REM THIS PROGRAM NEEDS NUMERIC DATA
20 PRINT “ENTER A NUMBER”
30 INPUT X% ---------------------
40 PRINT “NICE GOING, ACE!”
50 PRINT “I READ YOUR NUMBER AS”; X%
Try to enter these values and see what happens:
ONE FIFTH
.043
10

64

this is the variable
to be input

NUMERIC
FUNCTIONS

RANDOM
NUMBERS

AND
OTHER

FUNCTIONS

Included in your Plus/4 BASIC 3.5 language are numeric functions,
which are like the advanced calculations found on most scientific cal
culators (such as sine, cosine, tangent, etc.).

Most of the functions can be used by typing the name of the function
and the number to be operated by the formula in parentheses, like this:

FUNCTION(X)

For example, to find out the sine of a variable, you would type:

PRINT SIN(X)

with X as any number you want to input.

You could also include one of the functions in a program line, as the
following example shows:

10FORX = 1 TO 5
20 PRINT “THE SQUARE ROOT OF’’; X;“IS”; SQR(X)
30 NEXT X

There is a complete listing of the numeric functions in the BASIC 3.5
Encyclopedia. Some of the more complex functions are explained in
the following paragraphs.

Selecting a random number is like taking 10 pieces of paper, writing a
number from 1 to 10 on each piece and putting the 10 pieces of paper
into a hat and drawing one piece of paper. The number chosen is a
RANDOM number. The number is put back into the hat, and another
number is drawn. Each time a number is drawn, it is put back in the hat,
keeping the pool of possible numbers the same. When a number is
selected, there is no way of knowing what number is going to come up
next, but you do know that the number will be between 1 and 10. This is
the basis of RANDOM NUMBERS.

Random numbers are extremely useful in programming, providing the
element of chance or (obviously) randomness. Random numbers usu
ally have a range, meaning there’s an upper limit and a lower limit to
the numbers you can draw. In the hat example, the range of numbers is
1 to 10. The lower limit is “1” and the upper limit is “10”, which means
that any number from 1 to 10 can come up randomly each time a new
number is selected.

65

Let’s examine how your Plus/4 handles random numbers, and some
of the things you can do with them. This program generates five com
pletely random numbers:

10FORX=1 TO 5.PRINT RND(X):NEXTX

These random numbers are all rather complex, with several places
on the right side of the decimal point... but most uses for random
numbers require whole numbers. You can make your numbers come
out as whole numbers (without decimal places) by using the INTeger
function, which cuts off all the digits on the right side of the decimal
point. The following gives you a formula for generating random num
bers in any range you want. You can use this formula almost anywhere
you would use a variable or number in your program.

INT(range*RND(l)) lower limit

The INT command tells the computer to cut off any decimal places and
only give you whole numbers like 1,45, or 320, instead of numbers like
1.223, 45.6677, or 320.59. Whole numbers are easier to work with when
using random numbers.

Lower Limit in the formula refers to the lowest number you want the
computer to choose from.

Range is how many numbers are in the total group.

For example, if you want to choose a random number from 1 to 5,
the lower limit is 1 and the range is 5. If you want to choose a random
number from 15 to 20, the lower limit would be 15 and the range is 6,
because you are choosing from a pool of 6 numbers. If you’re choosing
numbers from 2 to 100, the lower limit is 2 and the range is 99. Now let’s
try out a program:

10 PRINT INT(5*RND(1)) + 1

Type RUN and press . RUN the program a few times.
Each time you run the program, you get a random number from 1 to 5.
Now let’s print 15 random numbers, with the lower limit 1 and the range
5... note that all 15 numbers chosen are selected at random from
between 1 and 5:

10FORX = 1 TO 15
20 PRINT INT(5*RND(1)) + 1
30 NEXT X

sets loop for 15 times

selects RaNDom
number

Type RUN and press RETURN.

An effective way to use this formula is to make it into a user defined
function. User defined functions are extremely useful in mathematical
calculations, and extremely easy to implement using your Plus/4. User
defined functions allow you to program a formula, and then let your
Plus/4 plug in values to be calculated. This can be used for many dif
ferent purposes. Section 10 of the Encyclopedia section contains a
listing of mathematical function derivatives which can be used to
define functions.

Here is a statement utilizing the user defined function for generating
random numbers:

10 DEF FNR(X)=INT(X*RND(1)) + 1

This gives us random numbers in the range from 1 to X. FNR is the
name of the function defined by this statement.

EXAMPLE using a defined function:

10 DEF FNR(X)=INT(X*RND(1)) + 1
20 DO
30 COLOR 1, FNR(16), 5: REM PICK A COLOR FROM 1 TO 16
40 PRINT “THE SEARCH GOES ON’’
50 LOOP

Using the defined function saves memory space when you use the
function more than once, and makes your programs easier to read
and understand.

67

CHAPTER 6
BEGINNING
BASIC
PROGBAMMING
• Introduction

• Programming modes

• Input/Output statements

• Control statements and loops

• Conditional statements

• Subroutines

• REMarks

68

INTRODUCTION Up until now, you may or may not have understood exactly what was
going on in the programs that introduced you to some of the capabili
ties of your Plus/4. This chapter will explain some of the BASIC com
mands that were used in those programs. This chapter focuses on
some of the more often used BASIC statements that you will need to
construct your own programs. At the end of this chapter we will touch
on some programming techniques. This chapter will give you a quick
introduction to programming, but it is still an introduction. To really
learn to program, we suggest you pick up a good book on BASIC at
your local bookstore. (See the bibliography in Section 14 of the Ency
clopedia for suggestions.) There are many versions of BASIC, each a
little different. Your Plus/4 is equipped with an advanced version of the
BASIC language called Commodore BASIC 3.5.

69

PROGRAMMING
MODES

Your Plus/4 gives you two ways to use BASIC statements and
commands: in direct mode and indirect mode. Direct mode is often
referred to as immediate mode, and indirect mode is also known
as program mode.

DIRECT, or IMMEDIATE MODE, as the name implies, executes state
ments and commands immediately (as soon as you press RETURN
after typing in a command). You do not type line numbers when using
commands or statements in direct mode. You only type the command
or statement and press the RETURN key. This mode is used if you
want your computer to perform calculations and give you an immediate
result. Commands such as LIST, SAVE, LOAD, VERIFY and RUN are
usually used in direct mode. Most (but not all) BASIC statements work
in direct mode.
INDIRECT, or PROGRAM MODE, allows you to organize a series of
BASIC statements into a set of instructions that will be performed in
the order that you decide. Each of the lines in the program has a line
number which tells the computer to execute the lines in a certain
order. You've already seen several examples of program mode in
Chapter 4. Remember that when you use program mode, you must
press RETURN to enter each line of the program into the mem
ory of your Plus/4. If you don't press RETURN , and just go to the
next line, the line you typed has not been entered. Once the program
is in memory, nothing will happen until you enter the RUN command.
The RUN command tells the Plus/4 to execute the program starting
with the lowest numbered line.

Lines are most often numbered by tens, since you’ll frequently have
to add lines in different places in the process of writing a program.
You could, if need be, add nine new lines between line 10 and line
20 in a program. However, your Plus/4 features a BASIC command,
RENUMBER, that allows you to add new lines and change the existing
line numbers. This saves a lot of confusion that often occurs when
changing and rearranging lines.

INPUTOUTPUT 1 nput/Output (I/O) statements are used in programs to communicate
STATEMENTS with the person RUNnin9 the program. Before the program is run, if all

the data for the calculations is available, there is really little need for
input statements. It is often more useful if the computer can get data
from the person RUNning the program (we ll call him or her the pro
gram user). Programs are much more versatile if the data is not “set in
stone" before running them. Output statements can be used by the
computer to tell the person running the program the answers that the
computer has calculated. Obviously, output statements are vital; there
would be little sense in RUNning a program that had no output state
ments. (Kind of like a tree falling in a forest with no one around to hear;
does it make a sound? Does it matter?)

Advanced programmers also use I/O statements to communicate with
devices instead of with the program user. You’ve probably done this
yourself, but not in a program—when you used LOAD or SAVE with your
Datassette or Disk drive. LOAD is basically an input statement since
the Plus/4 gets data (your program) from your Datassette or disk
drive while SAVE is an output statement, as the Plus/4 sends data to
those devices.

In this introduction to I/O statements, we will limit ourselves to a few
of the most important ones, the ones that you'll need immediately.
They are: PRINT, INPUT, GETKEY, and READ/DATA. PRINT is an
output statement, while the others are input statements.
(Remember that all BASIC I/O statements can be found in the BASIC
Encyclopedia at the end of this book.)

Statement name: PRINT

Format: PRINT “text in quotes or variables or numbers
or calculations, etc.

You have used the PRINT statement often in programs in earlier chap
ters. From that, and from the format example above, you can see that
PRINT is a very versatile statement. You can use it to PRINT out mes
sages, pictures made out of graphic characters, perform calculations,
display the value of a variable, and more. Since the PRINT statement is
used so often, it pays to learn to use it well.

Use #1 Text Display
Suppose in your program, you want to inform the user that his or
her checking account balance is negative, or that purple lizards are

• ••••••a jsaoosaoaooaaoaajao

not allowed in the control room. The easiest way would be to PRINT
your statement as a text string. Text strings are printed out exactly as
you type them in. They must be surrounded by double quotes (“ ’’).
For example:

100 PRINT ‘ ‘YOU ARE BROKE! ’ ’

would tell the user that there is no money left, while

150 PRINT “YOU CAN’T BRING YOUR FRIEND INTO THE
CONTROL ROOM’’

could be used in the second example.

Whatever appears between the quotation marks is known as a literal,
because it is PRINTed exactly as it appears. It doesn't matter whether it
is words, letters, numbers, punctuation marks, etc.

Certain keys, like the cursor and color keys, act differently when used
in text strings. Instead of changing the color or moving the cursor when
you type the key, a reverse character is printed in the string. When
the program is RUN, the character is translated into what you wanted
typed in the first place. This lets you clear the screen, change the color
your are PRINTing in, move the cursor, all within your program. For
example, try this:

10 PRINT “ SHIFT CLR/HOME CONTROL 3 TESTING,
CRSR-DOWN CONTROL 7 TESTING’’

Remember to type the following keys simultaneously when you use
the SHIFT and CONTROL keys. The reversed symbols are the signals
to the computer that tells it to perform the clear screen, color change
or move the cursor.

Use #2 Printing Numbers and Calculations
PRINT can display the answer to a calculation made within the print
statement? (SEE NUMBERS and CALCULATIONS). The Plus/4 per
forms the operations needed to get the answer, then displays it on
the screen. For example;

100 PRINT 58*15,23,45 + 1000-45*(4-3)
prints:

870 23 1000

72

This gets more interesting when variables are also used. User input
can be displayed, and earlier calculations saved in variables can also
be PRINTed out, or even used in additional calculations.

Examples:

TYPE:

10R=10 * 2: N = R-5
20 PRINT “R IS ”;R;“ AND N IS ”;N
30 PRINT “BUT R TIMES 2 IS”;R*2
40 PRINT “AND N MINUS 2 IS”;N-2

Normally, after each PRINT statement, the cursor automatically goes
to the beginning of the next line. You can override this by putting a
semicolon (;) after the PRINT statement like this:

200 PRINT “THESE TWO SENTENCE PARTS WILL BE ”■
210 PRINT “PRINTED ON THE SAME LINE’’

Statement name: INPUT

Format: INPUT “optional message’’;variable to be input

The INPUT statement lets you get data from the program user through
the keyboard, and use it in the program. The optional message lets you
tell the user exactly what you are asking for; the message is printed
when the INPUT statement is executed, along with a question mark.
Then the Plus/4 waits for the user to type an answer, followed by press
ing the RETURN key. The input from the user is placed in a
variable. You can either get a string from the user by using a string
variable (A$, for example), or a number by using a numeric variable.
The INPUT statement can only be used in program mode.

Examples:

TYPE:

10 PRINT “WHAT IS YOUR NAME’’;
20 INPUT A$
30 PRINT ‘‘I AM PLEASED TO MEET YOU’ ’; A$; ’
40 INPUT“HOW OLD ARE Y0U”;AG
50 PRINT AG;“ IS A BIT OLDER THAN I AM ’ ’
RUN

73

Statement name: GETKEY

Format: GETKEY variable to be input

GETKEY is another way for you to enter data while the program
is being RUN. The GETKEY statement accepts only one key at a
time. Whatever key is pressed is assigned to the string variable
you specified in the GET statement (AS, for example). GETKEY is
useful because it allows you to enter data one character at a time
without having to press the RETURN key after each character.
The GETKEY statement may only be used in a program.

Example of GETKEY in a program:

1000 PRINT “PLEASE CHOOSE A, B, C, D, E, OR F”
1010 GETKEY A$

Statement Name: READ/DATA
Format: READ variables to be input

DATA data items to be read

The READ/DATA statements are used as a convenient way to assign
values to variables. You can think of the READ statement as an INPUT
statement that asks the Plus/4 for the data, rather than the user. The
data is (naturally enough) kept in DATA statements. When the Plus/4
executes a READ statement, it looks at the next data item in the DATA
statement, and assigns it to the variable in the READ statement.

The READ statement is always used with a DATA statement. A DATA
statement is just a line of data (words or numbers) in a program. The
READ statement is used to assign those values to variables. (For each
variable listed in the READ statement, your Plus/4 “reads” a value from
the DATA line for that variable.) A DATA statement is not executable
and can appear anywhere in the program. The thing to remember
about the READ statement is that the variable type must be the same
as the type of data available in the DATA statement (number variables
for numbers, text variables for text). Otherwise, a TYPE MISMATCH
ERROR occurs.

Example:

10 READ A$,B$,C$,D$,E$
20 PRINT A$:PRINT B$:PRINT C$
30 PRINT D$: PRINT E$

40 DATA GROUCHO, HARPO, CHICO
50 DATA ZEPPO, GUMMO

The computer responds with:

GROUCHO
HARPO
CHICO
ZEPPO
GUMMO

CONTROL
STATEMENTS

AND
LOOPS

It would be pretty boring if your computer could only execute program
lines in order. The computer could only start at the beginning and go
through each step in order until the end of the program. This would
lead to very long programs; if you wanted to do the same thing twice
(like PRINT “HELLO"), you would have to duplicate the program lines.
With a small example like PRINTing HELLO, this doesn t make a lot of
difference, but it could become difficult in larger programs. This is why
computers have control statements. Control statements tell the com
puter to ignore the normal order of the program lines, and go to another
line regardless of the sequence. The Plus/4 has several varieties of
control statements: unconditional (like GOTO) which always transfer
control; counting statements (like FOR/NEXT) which transfer control
a specified number of times; and, for you structured programming
fans out there, DO/LOOP.

Statement Name: GOTO

FormaLGOTO line #
GOTO tells your computer to immediately go from the current line in
your program to the line number specified in the GOTO statement.
For example, if line 20 reads GOTO 40, your Plus/4 would jump to
line 40, skipping any statements between 20 and 40.

Example using GOTO statement in a program:

TYPE:
10 PRINT “A PENNY SAVED IS BETTER THAN NOTHING”
20 GOTO 10

The computer responds by printing the message in line 10 again and
again, until you press the STOP key, like this:

A PENNY SAVED IS BETTER THAN NOTHING
A PENNY SAVED IS BETTER THAN NOTHING
A PENNY SAVED IS BETTER THAN NOTHING

BREAK IN 10
READY.

If you press the
STOP key

This print statement will continue ‘forever’. Every time your Plus/4 gets
to the GOTO in line 20 it goes back to line 10. This is called an INFINITE

LOOP in computerese. While you might want to do this, usually you
want to repeat only a certain number of times, or until something hap
pens. That is why the FOR/NEXT and DO/LOOP statements are avail
able in BASIC.

GOTO can also be used in direct mode. GOTO line # will start the
program at the line you specify, while keeping the variables the same
(instead of clearing them as RUN does).

Statement Name: FOR/NEXT

FormaLFOR variable = start value TO end value

some BASIC statements

NEXT variable

The FOR/NEXT statements let you create a loop that will repeat a
certain number of times. The program statements between the FOR
statement and the matching NEXT statement are repeated in the loop
The variable in the FOR statement acts as a counter. It is initially set at
the start value you supply. Then, the program lines after the FOR are
executed, until the computer gets to the matching NEXT statement.
The NEXT tells your Plus/4 to add one to the counter. If the counter is
less than or equal to the end value, the computer returns to the pro
gram line after the FOR statement. Otherwise, your Plus/4 continues
with the first statement after the NEXT.

Example using a FOR/NEXT loop

10 PRINT,“COUNTUP...”
20 FOR J = 1 TO 10
30 PRINT “WE HAVE”; J
40 NEXT J
50 PRINT “WE COUNTED UP TO”; J

One more thing about FOR/NEXT: you can also specify a STEP value in
the FOR statement. Instead of adding 1 to the counter variable, your
Plus/4 adds your STEP value. If you use a STEP of 5 with the statement
FOR M = 10 TO 30, for example, the counter would count 10, 15, 20,
25, 30 after each loop. The STEP command even lets you count back
wards (by using a negative STEP value).

77

Another example, with a negative STEP:

10 PRINT “COUNTDOWN...”
20 FOR J = 10 TO 0 STEP -1
30 PRINT “WE ARE AT”;J
40 NEXT J
50 PRINT “WE HAVE LIFT-OFF AT”; J

Statement Name: DO UNTIL/WHILE... LOOP UNTIL/WHILE

Format: DO UNTIL [condition] WHILE [condition]

some BASIC statements

[EXIT]

LOOP UNTIL [condition] WHILE [condition]

The DO/LOOP statement combination is another way to create a
loop. This statement combination is very powerful and versatile. The
DO/LOOP method of loops is a common technique of structured
programming languages. In this chapter we’ll discuss just a few
possible uses.

If you want to create an infinite loop, just start a section of program
lines with DO, and end it with a LOOP statement, like this:

100 DO: PRINT “GOING UP”
110 LOOP

Press the STOP key to end the program.

A more useful form is to combine the DO/LOOP with the UNTIL
statement. The loop will run continually unless the condition for
UNTIL happens.

100 DO: INPUT “DO YOU LIKE YOUR COMPUTER”;A$
110 LOOP UNTIL A$ = “YES”
120 PRINT “THANK YOU”

For the other ways you can use the DO/LOOP, see the BASIC
Encyclopedia at the end of this book.

78

CONDITIONAL
OR

DECISION
MAKING

STATEMENTS

Conditional statements are used to make decisions. One of the most
powerful abilities of a computer is to make decisions based on what is
going on. One of the conditional statements available on the Plus/4 is
known as IF/THEN statements.

Statement Name: IF/THEN

Format: IF condition THEN do this (only if the condition is true)
Basically, the IF/THEN statement works like this:

IF (this statement is true) THEN (do this statement)
Actually, you have always known how conditional statements work.
How many times have you heard this famous line?:

IF you eat all your vegetables THEN you can have dessert. That may
seem a bit trivial, but that is the gist of the IF/THEN statement.

If the condition in the IF statement is true, everything after the THEN
is executed.

EXAMPLE:

10 INPUT“WHAT’S THE TENTH LETTER OF THE ALPHABET” A$
20 IF A$ = “J” THEN PRINT “RIGHT”: GOTO 100
30 INPUT “IS THIS AN A";X$
40 IF X$ = “A” THEN 60
50 PRINT “WRONG, TRY AGAIN”: GOTO 30
60 PRINT “TYPE A B”
70 GETKEY A$:IF A$ = "B”THEN PRINT “RIGHT"
100 PRINT “THAT’S ENOUGH OF THIS, ANYWAY”

In line 40 , we just say THEN 60. This actually means THEN GOTO 60,
but since the THEN GOTO combination is used so often, BASIC allows
you to leave off the GOTO. An optional step for the IF/THEN statement
is the ELSE clause, that directs your computer to a specific action if
the original IF condition was not met. An example showing the ELSE
clause would be: IF B > 5 THEN 40 ELSE GOTO 10. The BASIC Ency
clopedia explains the IF/THEN/ELSE statement more fully.

79

SUBROUTINES If you have something in your program that has to be repeated in more
than one place in your program, you have two choices: you can have
duplicate routines, or you can create a subroutine. A subroutine is a
section of your program that can be used from anywhere else in your
program. When the subroutine is finished, the program automatically
continues at the statement just after where the subroutine was called.

Statement Name: GOSUB/RETURN

Format:GOSUB line #

The GOSUB statement is used to call a subroutine. Like the GOTO
statement, control is transferred to the line number specified in the
statement. However, unlike the GOTO, the Plus/4 remembers where
the GOSUB is located. When a RETURN is next encountered, control
returns to just after the GOSUB statement.

Example:

5T = 0:FORJ= ITO 99
10 PRINT “GIVE ME A NUMBER FROM 1 TO 10”
20 INPUT N
30 IF N<1 THEN GOSUB 100: GOTO 20
40 IF N>10 THEN GOSUB 100: GOTO 20
50T = T + N
60 NEXT J
70 PRINT “THE TOTAL IS” J
80 END
100 PRINT “THAT NUMBER IS OUT OF RANGE”
105 PRINT “PLEASE TYPE A NUMBER BETWEEN 1 AND 10
110 RETURN

If a RETURN is encountered when there are no active GOSUBs, you
get a RETURN WITHOUT GOSUB ERROR. You should be careful that
the computer never gets into one of your subroutines except by GOTO.
One method is to group the GOSUB and GOTO statements together,
protected from normal program execution by an END statement.

Statement Name: REM

Format: REM message

The REM statement is used to comment (or REMark) on your pro-
grams. The REM statement is not executed as part of the program; it is

a message that can be seen only when looking over the LISTing of a
program. Often, if you don’t comment, six months after you write the
program you might forget what some part does. You can use REM
statements to put in reminders, so you can more easily figure out what
you really meant, or give others information with your messages.

Example:

1560 E = R/I*9:REM THIS FIGURES OUT A PITCHER’S ERA
100 INPUT A, B: REM A IS HEIGHT IN INCHES AND B IS WEIGHT

81

SUMMARY As we REMarked in the introduction, this would not be a complete tuto
rial on BASIC. We just gave you some of the BASICs. Every BASIC
command in the P us/4 is in the BASIC Encyclopedia, with format,
description, and examples. Don’t be afraid to experiment. If you are
serious about learning BASIC, get some of the books on BASIC pro
gramming listed in the Section 14 of the Encyclopedia. Programming is
like eating salted peanuts: once you start, you may not be able to stop.

CHAPTER 7
USING
GRAPHICS
AND
COLOR

• Graphics characters

• Character animation

• Controlling colors

• High resolution graphics

• Points, lines, and labels

• Squares, circles, polygons, and painting

• Multi-color graphics

83

GRAPHICS
CHARACTERS

Each letter key contains 2 different graphic characters, as do the @,
*, and English Pound keys. To print graphics characters, you must hold
down the SHIFT or Cx Keys while you press the key for the
graphics symbol you want.
When your Plus/4 is in upper-case/graphics mode, hold down

SHIFT and press a letter key to display the graphics character on
the right side of that letter key. These characters include the playing
card suits, a solid and a hollow ball, and a set of lines and connecting
characters that let you draw many different pictures on your screen.
Here are some examples to help you get used to these characters:

Exercise 1: Large Circle

Step 1
2
3
4
5

Press down the SHIFT LOCK key.
Press the letter U then the letter I.
Press the RETURN key.
Press the letter J then the letter K.
Press the RETURN key.

Exercise 2: Snake

Press down the SHIFT LOCK key.
Press U, then I, then U, then i, then U, then I.
Press the RETURN key.
Press K, then J, then K, then J, then K, then J.
Press the RETURN key.

Exercise 3: Crooked Line

Stepl: Press down the SHIFT LOCK key.
2: Press E, then D, then C, then *, then F, then R.
3: Press the RETURN key.

Exercise 4: Two Crosses

Step 1
2
3
4
5
6
7

Press down the SHIFT LOCK key.
Press M, then SPACE, then N, then SPACE, then —.
Press the RETURN key.
Press SPACE, then V, then SPACE, then *, then +, then *
Press the RETURN key.
Press N, then SPACE, then M, then SPACE, then —.
Press the RETURN key.

84

Ilt
lll

lD
liJ

D
IIl

iJ
IU

 ••
•••

••
When you are finished, press SHIFTLOCK again so it pops up.

Did you wonder why the computer doesn’t say SYNTAX ERROR when
you hit RETURN ? After all, you had characters on the line that
weren't commands that the computer can understand.

The reason is that the Plus/4 doesn’t pay attention to the line you typed
if you hold down SHIFT when you press RETURN. If you press

RETURN without the SHIFT key, the computer tries to figure out
what you mean when you’re just drawing pictures.

So far we haven’t talked about the graphics characters on the left side
of the keys. These graphics work just like the right side characters, ex
cept that you hold down the Cs key instead of SHIFT . There is
no MKB lock, so you must hold it down yourself.

You can print this set of graphics in either upper-case/graphics mode
or upper/lower-case mode. They are always available.

The left side graphics characters include lines and angles used for draw
ing charts and tables. For example, here’s how to underline a word:

First, move the cursor to the line below the word you want to underline.
Then hold down the < C* I key and the T key, which prints an under
line graphic. Hold these two keys down until the word is underlined.

Exercise 5: Half Bar

Step 1: Hold down the key with one hand during the whole
exercise.

2: Press D, then I, then I, then F.
3: Press the RETURN ___key.

Exercise 6: Wedge

Step 1: Hold down the & key and hit T, then Y, then U.
2: Hold down the CONTROL key and hit 9.
3: Hold down the C< key and hit I, then O, then P, then @,

then SPACE.
4: Press the RETURN key.

85

Exercise?: Window

3
4
5
6

7:
8:

Hold down the C« key until step 4.
Press A, then R, then S, then RETURN.
Press Q.
Let go of Cs (it’s OK, honest).
Hold down SHIFT and hit+.
Let go of SHIFT and hold down O
go of it any more.
ProQQ \A/ thenricbo VV, LI Icl I ■ K&lUJtWI

Press Z, then E, then X, then RETURN

again. Don’t let

The purpose of these exercises is to show you how the graphic sym
bols of the Plus/4 can be manipulated to create different shapes and
figures. These are only a handful of the figures and representations
you can develop. Now that you have a good idea of what is involved in
using the graphic symbols to build different forms, you should experi
ment with them yourself, and see what you come up with.

86

•••
•••

•••
•••

•••
•••

•••
•a

•••••«••<•••<•*••trttttttttt

CHARACTER
ANIMATION

Movies are really a sequence of still pictures. Each picture is a little
different from the one that came before. The projector shows each
picture for a very short time, then goes on to the next one. The scene
becomes animated.

Computer animation works the same way. First the computer draws
one picture, then it changes the picture slightly. The Plus/4 is fast
enough to allow objects to move smoothly all around the screen in
your games and practical programs.

You can’t type fast enough to create animation. A movie is animated
at a rate of 30 pictures per second. The changes must be fast enough
to fool the eye. So you must use a program to draw a picture, wait for
a split second, then change to a new picture.

To get the program to create pictures we use the PRINT statement with
the graphic characters. The simplest type of animation involves alter
nating two characters to get the effect of movement.

This program simulates the movement of a pulsing ball.

Type NEW and press RETURN before entering each new program.
Remember to press RETURN after each line in all these programs.

10 PRINT “ HOME SHIFT Q’
20 FOR L=1 TO 100
30 NEXT L ------------------------
40 PRINT “ HOME SHIFT VV Type these keys
50FORL = 1 TO 100 ----- simultaneously
60 NEXT L
70 GOTO 10

Type RUN and press RETURN .

To get a more interesting effect you can build a small picture from
several graphic characters, then change a few of the characters
while leaving others in the same place. This gives the effect of part
of an object moving, demonstrated in the following program.

87

IMPORTANT TO NOTE: Each time SHIFT or O is
referred to, it should be typed at the SAME TIME as the key
following it when entering the program.

10 PRINT" HOME SHIFT M SHIFT W SHIFT N”
20 PRINT “SPACE + SPACE ”
30PRINT" SHIFT N SPACE SHIFT M”
40 FOR L = 1 TO 100: NEXT L
50 PRINT" HOME SPACE SHIFT WSPACE”
60 PRINT “O' T C1 + C* T”
70 PRINT “SPACE C1 G G G”
80FORL=1 TO 100: NEXT L
90 GOTO 10

Type RUN and press RETURN

In both examples of animation so far, we’ve worked on only one area on
the screen. The next step is to move the animated figure around. The
TAB function helps when you want to move objects from the left edge.
The following program portrays a snake crawling on the screen.

Remember that shift and the following key are still typed
together.

5 FOR A = 0 TO 30
10 PRINT" SHIFT CLR ”
20 PRINT TAB (A) " SHIFT U SHIFT I SHIFT U SHIFT I
30 PRINT TAB (A) " SHIFT K SHIFT J SHIFT K SHIFT J
40 FOR L = 1 TO 100: NEXT L

SHIFT K”
80FORL = 1 TO 100: NEXT L
90 NEXT A

50 PRINT" SHIFT 1 CLR ”
60 PRINT TAB (A+l) “ SHIFT I SHIFT U SHIFT I

SHIFT U”
70 PRINT TAB (A+l) " SHIFT J SHIFT K SHIFT J

Using characters like the ball (SHIFT Q), you can play video
games on the screen. To move a ball, just erase the ball and replace it
at a new position, as in this program.

88

(tiiintttttiterrrctitrirtti

10 PRINT “ SHIFT CLR ”
20 PRINT “SPACE SHIFT Q [|
30FORL-1 TO 50: NEXT L
40 GOTO 20

Left cursor arrow
leave a space here

Type RUN and press the RETURN key. Press the STOP key when
you want to stop moving the ball.

CONTROLLING
COLORS

Separate colors can be put into each part of the screen. The border
can be one color, the background a different one, and each character
can have its own color. You already know how to set the character col
ors using the keyboard. The COLOR command adjusts the color of the
other screen areas.

Turn the border of your screen red by typing the command COLOR 4,3 a
pressing the RETURN key. The number 4 in the command stands for
the border area, and color number 3 is red (the same number as on the
key marked RED).

Now type COLOR 0, 7 and hit RETURN . The screen background
turns blue. The number 0 stands for the background, while the 7 is blue
(also the same as the keyboard).

The first number after the word COLOR stands for the area on the
screen you want to change. Area 0 is the background, 1 is the char
acter color, 4 is the border. You’ll learn about areas 2 and 3 when you
get into multi-color graphics later in this chapter.

Screen Area Numbers
AREA# AREA NAME

0
1
2
3
4

Background
Character
Multi-color 1
Multi-color 2
Border

Each color also has an adjustable brightness level, called the lumi
nance. You can add a number from 0 (darkest) through 7 (brightest)
after the color number to vary the color. Type COLOR 4 ,3, 0 and hit

RETURN. The border becomes a dark red. Type COLOR 4, 3, 7
and the border changes to a bright red.

90

111IJ•••••••••••>•••»•■••

-

n

R

O
R
n

Color Numbers
COLOR# COLOR COLOR# COLOR

1 BLACK 9 ORANGE
2 WHITE 10 BROWN
3 RED 11 YELLOW GREEN
4 CYAN 12 PINK
5 PURPLE 13 BLUE GREEN
6 GREEN 14 LIGHT BLUE
7 BLUE 15 DARK BLUE
8 YELLOW 16 LIGHT GREEN

In short, the COLOR command looks like this:
COLOR area, color, luminance
Here is a quick program to show you all the Plus/4’s colors:

First type NEW and hit RETURN . Don’t forget to hit RETURN
after each program line.

10 COLOR 0, 7, 7
20 FORM=0TO7
30FORN=1 TO 2
40 FOR L=ITO 16
50PRINT" CONTROL RVSON
60 READ A
70 COLOR 1, A, M
80 PRINT"
90 NEXT L
100 PRINT
110 RESTORE
120 NEXT N,M
130 COLOR 1, 2, 4
200 DATA 7,14,4,13,6,16,11,8,10,9,3,12,5,15,2,1

Now type RUN and hit RETURN , to see a bright blue screen with
each of the other 15 colors shown at each luminance level.

NOTE: Like most of the BASIC graphic terms reviewed in this
chapter, COLOR may be referred to as a statement or com
mand interchangeably. The distinction is unimportant in ex
plaining COLOR, or any other graphic commands, since it is
based on whether the term is more often used in direct or pro
gramming mode.

HIGH
RESOLUTION

GRAPHICS

Your Plus/4 screen contains 25 rows of 40 characters each, or 1000
total character positions on the screen. Each character is formed out of
single dots, with 8 rows of 8 dots each making an entire character. Your
screen has a total of 320 dots on each row, and 200 rows of dots, or
64,000 dots all together. Your Plus/4 has control over every single dot.

Using normal graphics, you have limited control over the individual
dots. You must use the 256 characters in each character set built into
the Plus/4, which lets you create many pictures. But think of how many
you could create if you could control each dot by itself I

The high resolution graphics ability of the Plus/4 lets you do just that.
You can use commands that let you draw and erase dots, lines, circles,
and other shapes.

There is one limit to high-res graphics. The Plus/4 can only use two
colors in each 8x8 character position. That is, each 8x8 space on
the screen where characters usually go is limited to two colors (fore
ground and background color for that square). You can use different
colors for each different character position, but only two colors within
that position. Another graphic mode that will be covered later in this
section, multi-color mode, allows up to four different colors per
character position at the cost of the resolution available in the high-
resolution mode.

This program utilizes some of the high resolution graphics capability of
the Plus/4, in particular the GRAPHIC command. Start by typing NEW
and hitting RETURN Hit the RETURN key after typing each
line. After typing in the entire program, type RUN and hit RETURN
as usual.

10 COLOR 0,1
20 GRAPHIC 1,1
30FORL = 2 TO 16
40 COLOR 1,L,2
50 DRAW l,0,L*12 TO 319,L* 12
60 DRAW l,L*18,0 TOL*18,199
70 NEXT L
80 FOR L = 1 TO 5000: NEXT
90 COLOR 1,2,3
100 GRAPHIC 0

Notice that the colors change near the intersections.

92

• •••••••••••••••a iiim
tii

i

(11(11(c(t(
t f c 1111terete r 111

To switch from normal graphics (also called Text Mode) to high-res,
just type the command GRAPHIC 2,1 and hit RETURN . What hap
pens? The screen goes blank and the cursor reappears near the bot
tom of the screen. The Plus/4 divided up the screen into 2 separate
sections: the top for graphics and the bottom five lines for text. If you
don’t want the bottom five lines for text, you can use the command
GRAPHIC 1,1, but you won’t be able to see any commands you type.

You can switch back and forth from graphics to text using the
GRAPHIC command. The command GRAPHIC 0 switches the screen
back to text, while GRAPHIC 2 switches back to high-res without eras
ing the screen. Adding ,1 after the command erases the screen.

In general the GRAPHIC command looks like this:

GRAPHIC mode, clear this part is optional

Mode
Number Effect

0 Text
1 High-res
2 High-res + text
3 Multi-color
4 Multi-color + text _________

Clear
Number Effect ______ _

0 Don’t clear screen
1 Clear screen __________

There is another way to clear the high-resolution screen. The command
SCNCLR erases the screen without changing the graphic mode.

Once you use high-resolution graphics, the computer sets aside 10K of
memory for your hi-res screen. This memory is taken from the BASIC
program area. When you are through using graphics, you can reclaim
this memory by using the command GRAPHIC CLR.

POINTS,
LINES,

AND
LABELS

Type the commands GRAPHIC 2,1: DRAW 1,0,0 and hit RETURN
Look closely at the upper left comer of the screen. The Plus/4 drew a
black dot there.

In the DRAW command, the first number is either 1 (foreground color)
or 0 (background). The next two numbers are for the row and column
positions for the dot. So if you wanted to draw a dot at column 17, row
20, just type DRAW 1,17,20. To erase the same dot type DRAW 0,17,20.

The DRAW command can also draw a line between any two points.
Just add the word TO and the coordinates of the other end, like this:
DRAW 1,1,1 TO 100,100. This draws a line from 1,1 to 100,100.

If you are used to drawing graphs in math, you might get a little con
fused at first while using the computer. The coordinate system in the
Plus/4 is different from what you’re used to. In math the 0,0 point would
either be at the center or the lower left corner of the screen, but on the
computer it is the upper left corner. You’ll get used to the system in the
computer as you practice.

Once you have put a point or line on the screen, you can draw a line
from it to any other point like this: DRAW 1 TO 150,50. This draws a line
from the last point drawn to column 150, row 50. If your program uses a
lot of DRAW TO commands, you could place the first dot at a position
on the screen by using the LOCATE command, as in LOCATE 100,100.

The DRAW command can have several forms, such as:

COMMAND RESULT

DRAW color source, column, row
DRAW color source, column, row TO column, row
DRAW color source TO column, row

POINT
LINE
LINE DRAWN
FROM LAST F

Color source is 0 for the background, 1 for the foreground

To erase points or lines on the screen, use the DRAW command fol
lowed by the number 0. If you created a point with DRAW 1,1,1, you can
erase it with DRAW 0,1,1. A line created with DRAW 1,1,1 TO 100,100 is
erased by DRAW 0,1,1 TO 100,100.

94

• •••••••••••••a)••••••••

This program draws a curve based on the sine function. Type NEW
and hit RETURN . Remember to hit the RETURN key after each
line, then type RUN.

10 COLOR 0,1
20 COLOR 1,2
30 GRAPHIC 1,1
40 LOCATE 0,100
50 FOR X= ITO 319
60 Y = INT (100+99 * SIN(X/20))
70 DRAW 1 TO X,Y
80 NEXT X
90 FOR L=ITO 5000
100 NEXT L
110 GRAPHIC 0

Don’t type NEW after RUNning the last program. To plot the program
differently, change line 70 to:

70 DRAW 1, X, Y

The
Char

Command

This program plots the same curve using points instead of lines.

Graphs are more easily understood and useful if you label them. You
can use the CHAR command to mix text right into a high resolution
drawing. For instance, the statement CHAR 1,0,5,“HELLO” puts the
word HELLO into the sixth row at the left edge of the screen. The first
number after the word CHAR is either 1 (for draw) or 0 (for erase). The
next two numbers are the column and row where the text appears.

Leave the last two programs in the computer: don’t type NEW. Add
these lines:

95

81 CHAR 1,0,0,“GRAPH OF”:CHAR 1,0,1,“FORMULA”
82 CHAR 1,0,2,“Y=SIN(X)”
83 DRAW 1,0,100 TO 319,100,189,0 TO 189,199
84 CHAR 1,0,12,“X-AXIS”: CHAR l,22,0,“Y”
85 CHAR 1,22,2,“A”: CHAR 1,22,3,“X”
86 CHAR 1,22,4,“I”: CHAR 1,22,5,“S”

SQUARES,
CIRCLES,

POLYGONS,
AND

PAINTING

Drawing
Rectangles

Using the DRAW command, you can draw pictures by plotting many
dots or lines. To draw a square, you can use the command DRAW 1,0,0
TO 100,0 TO 100,100 TO 0,100 TO 0,0 (plotting each endpoint of the
square) or you can just use the BOX command.

THE BOX COMMAND
Your Plus/4 includes a command to make it easier to draw squares and
other rectangular shapes. The BOX command lets you pick the points
of 2 opposite corners of the square. To duplicate the same box as in
the above example, just use BOX 1,0,0,100,100. The number 1 again
means that you want to draw and not erase. The next four numbers are
the coordinates of the box’s opposite corners, (0,0) at the upper-left
corner and (100,100) near the middle of the screen.

The BOX command can form any rectangle just by changing the cor
ners. You can even rotate the box by specifying an angle (in degrees)
after the last coordinate, like this: BOX 1,50,50,100,100,45. The box is
rotated 45 degrees clockwise.

If you would like to draw a solid box instead of just the outline, you just
add a comma 1 after the angle. A solid box at the center of the screen is
shown as BOX 1,100,50,220,150,,1. Notice that you need a comma to
take the place for the angle, even though you don’t want the box rotated.

Some typical forms of the BOX command are:

COMMAND EFFECT
BOX on, columnl, row1, column2, row2
BOX on, coll, row1, col2, row2, angle
BOX on, coll, row1, col2, row2,, fill
BOX off, coll, row1, col2, row2, angle, fill

Outline
Rotated
Solid box
Erase area
of screen

Here are a couple of programs that use the BOX command:

Don’t forget to type NEW then hit RETURN before entering each
program, and press return! after typing in each line.

10 COLOR 0,1
20 COLOR 1,2
30 GRAPHIC 2,1
40 A =RND(1)* 20+ 10

97 continued on next page

50 FOR L = 0 TO 359 STEP A
60 BOX 1, 100, 30, 220, 130, L
70 NEXT L
80 FORL=1 TO 2000: NEXT L
90 GRAPHIC 0,1

5 TRAP 60
10 GRAPHIC 2,1
20 DEF FNA(X)= INT(RND(l)* X)
30 COLOR 1,FNA(15) + 1
40 BOX 1, FNA(320), FNA(160), FNA(320), FNA(160)„ 1
50 GOTO 30
60 COLOR 1,2,3: GRAPHIC 0

Here’s a quick program for drawing polygons:

Hit
tered. Hold down the

Drawing
Circles

RETURN and type RUN after each program is completely en-
STOP key to end the program.

The second program draws different colored squares all over the
screen. You’ll notice some parts of the screen changing when other
parts near them change. The reason for this was discussed earlier in
this chapter.

Your Plus/4 also has commands for drawing circles. Like the BOX
command, we can vary the shape of the circle to form an oval (also
called an ellipse), and we can rotate the oval. We can also just draw
a section of the shape (called an arc).

This command draws a circle in the center of the screen: CIRCLE
1,160,100,50. This tells the Plus/4 to draw a circle with its center at row
160 and column 100, with a radius of 50. This actually produces an
oval, since the dots on the screen are taller than they are wide. To
change this to a real circle you must add a separate number to tell that
the height is different from the width, like this: CIRCLE 1,160,100,50,42.

The Plus/4 can also draw a square, triangle or other polygon using the
CIRCLE command. Just tell the computer how many degrees to go
between points on the circle, like this: CIRCLE 1,160,100,50,42,,,,120.
This command draws a triangle, since each side is 120 degrees.
(Omitting number values while including commas in a graphic com
mand causes the computer to read standard default values for the
missing number.) A simple formula to get the angle for a polygon with
N sides is 360/N.

98

looeioeioD
ioiiB

oeoiim
sio

10 GRAPHIC 2,1
20 INPUT “HOW MANY SIDES”; A
30 IF A<2 OR A>100 THEN PRINT “DON’T BE RIDICULOUS”:
GOTO 20
40 CIRCLE 1,160,80,40,33,,,,360/A
50 GOTO 20

You can choose to draw only an arc instead of a whole circle.
The CIRCLE command accepts the starting and ending angles
in degrees, right after the height number. The command CIRCLE
1,160,100,50,42,90,180 displays only the lower right section of
the circle.

To rotate an oval, add the angle of clockwise rotation after the
command, like this example: CIRCLE 1,160,100,100,20,,,30.

The usual forms of the CIRCLE command are:

COMMAND EFFECT
CIRCLE on, center column, center row, radius
CIRCLE on, c-col, c-row, width, height
CIRCLE on, c-col, c-row, wid, ht, start, finish
CIRCLE on, c-col, c-row, width, height,,,angle
CIRCLE on, c-col, c-row, wid, ht,,,,point angle

oval
circle/oval
arc
rotate oval
polygon

NOTE: When there are commas without numbers in a command
such as CIRCLE or BOX, the Plus/4 automatically interprets the
comma as an input of the default value for that parameter of the
command. For example, CIRCLE,160,40,100,100 is read by the
computer as CIRCLE 1, 160..., reading the default value of 1 for
the color source.

This next program uses the CIRCLE command for an interesting effect.
Type NEW then hit RETURN to erase the last program from memory
before typing in this program.

99

10 COLOR 0,1
20 COLOR 1,2
30 GRAPHIC 1,1
40 A = RND(l)* 20+ 10
50 FOR L = 0 TO 359 STEP A
60 CIRCLE 1, 160, 100, 80, 40,„L
70 NEXT L
80 FOR L = 1 TO 2000: NEXT L
90 GRAPHIC 0,1

Here’s a program you can try that uses the CIRCLE command to create
a simple design.

NEW
10 COLOR 0,1
20 COLOR 1,2
30 GRAPHIC 2,1
40 FORL-1 TO 4
50 Y=50
60 IF L=2 OR L=4 THEN Y= 100
70X=L*35 + 50
80 CIRCLE 1, X, Y, 50, 42
90 NEXT L
100 PRINT “PLUS/4 CIRCLES”

100

I ••
••

••
••

••
••

••
••

••
••

••
••

••

The
Paint

Command

The PAINT command fills in any enclosed area up to the boundaries
formed by any lines drawn on the screen. If there are no drawn lines,
the screen is filled right to the edge. The BOX command can be used
to fill in boxes and rectangles with color. The PAINT command can
color in irregular shapes and other non-uniform areas on the screen
that can’t be filled with other commands.

In the last exercise, we created a 4-ring symbol. By adding some
PAINT commands to the program we can color in only the areas
between the rings.

Add these lines to the last program:

HOFORL=OTO 1
120 PAINT 1,120 + 35 *L, 75
130 NEXT L

101

MULTI- The Plus/4 high resolution graphics give you control over every single
COLOR dot or “pixel” on the screen, but you have seen that the ability to put

fiRAPMIPQ colors close together is limited. Most high-res programs can use only
unnrniuo one or two colors.

For including more different colors, your Plus/4 has a special “in
between” graphics mode called multi-color graphics. In multi-color
graphics, you control half as many dots on each row as in high-res be
cause each dot is twice as wide. You get 160 dots on each row, while
still getting 200 rows. There is a trade-off for the use of multiple colors,
which is slightly lower resolution.

To begin using multi-color graphics, review the GRAPHIC command
earlier in this chapter. You’ll see that the multi-color screen without
text is GRAPHIC 3 and the multi-color screen with 5 lines of text is
GRAPHIC 4.

Now look at the table listing the COLOR command. There are two
areas that we haven’t used yet, areas 2 and 3. These areas hold two
extra colors. You can use any of the three colors (1, the text color; 2, an
extra color; and 3, another extra color). These colors do not interfere
with each other on the screen the way the high-res colors do in some
previous programs in this chapter.

These two programs make use of multi-color graphics, the first with the
rings and the second showing a “neon sign” effect.

10 COLOR 0,1
20 GRAPHIC 4,1
30FORL = 1 TO 4
40 Q=L: IF Q>3 THEN Q = Q-3
50 COLOR Q,L + 1
60 Y=50
70 IF L = 2 OR L = 4 THEN Y= 100
80 X- L*18 + 25
90 CIRCLE Q, X, Y, 25, 42
100 NEXT L

102

•
i a a • • a a o • • • • o • a a a • a • d • ® • • o

Type NEW then hit RETURN . Don't forget to hit the RETURN key
after each line. Type RUN and hit RETURN at the end.

10 COLOR 0,1
20 GRAPHIC 3,1
30 COLOR 3,1
40 TRAP 200
50 DRAW 3,10,10 TO 10,100: DRAW 3,10,55 TO 30,55
60 DRAW 3,30,10 TO 30,100: DRAW 3,50,10 TO 80,10
70 DRAW 3,65,10 TO 65,100: DRAW 3,50,100 TO 80,100
80FORL=0TO7
90 COLOR 3,2,L
100FORM=1 TO 100: NEXT M
110 NEXT L
120 COLOR 3,1
130 FOR M = 1 TO 100: NEXT M
140 GOTO 80
200 GRAPHIC 0: COLOR 1,2,7

Color area 3, the second of the multicolor areas, has a special ability
that none of the others has. Once you have drawn on the screen using
area 3, you can change that color everywhere it appears on the screen
by using the COLOR command. If you set the color with COLOR 3,5
and draw using that color, your graphics appear in purple. If you then
change the color with COLOR 3,6, all the purple areas would change
to green. This doesn’t work with any other area.

The Plus/4 Programmer’s Reference Guide contains more information
about graphics.

103

•I

O

o

u
o
u
u

o

o

w

B
 □ 0 JJ

JU
B

JJ
J

J

CHAPTER 8
MAKING
SOUND
AND
MUSIC
ON
THE
PLUS/4
• Introduction

• Volume command

• Sound command

• Creating sound effects

• Making some music

 • The Plus/4 Music Machine

104

INTRODUCTION Here is a short program to make music on your Plus/4. Type in the pro
gram exactly as it appears, and remember to press RETURN at the
end of each line. When the program is typed in, type RUN and then
press RETURN . When the program asks you to enter a number,
type any number from 0 to 1023 and press RETURN To stop the
program, enter a zero as your value.

10 VOL 8
20 DO
30 INPUT X
35 IF X> 1023 ORX<0 THEN PRINT “0 TO 1023, PLEASE” - GOTO 30
40 SOUND 1, X, 10
50 LOOP UNTIL X-0

THE
VOLUME

COMMAND

Press the RUN/STOP key to stop the program.

Here s how to play a single note on your Plus/4. Type NEW and oress
RETURN to clear the Plus/4 s memory.

First: Type NEW and press RETURN
Type VOL 8 and press RETURN

Second: Type SOUND 1,266,60 and press RETURN

You should hear a note play for about a second and then stop. If you
don t hear anything, turn up the volume of your television or monitor
and try it again.

These two steps are the only commands that you need to know to play
music on your Plus/4. Let s look at what these two commands do.

The VOL command controls the VOLume of the notes that the Plus/4
plays. Think of the first three letters of the word “volume’ to remember
the VOL command. The number that comes after VOL is the setting
for the volume. Think of the VOL command as a volume knob on the
Plus/4. When the knob points to zero, the volume is off and you won’t
hear anything. When the knob is set at 8, the volume is turned up all
the way, and your Plus/4 plays as loud as it can.

Try the first example again and use a different number after the VOL
command. The smaller the number, the softer the note is played.

105

m
inim

us

c c
c cm

 e e c t • c c c e e c c 11 c
c c r c c

THE
SOUND

COMMAND

The SOUND command tells your Plus/4 everything it needs to know
about the sound you want to play. The SOUND command is followe
by three numbers that describe the note:

SOUND voice, note value, duration
The first number in the sound command refers to voice. The number for
voice can be a 1,2 or 3. The Plus/4 sound is produced by two different
“voices”, 1 for the first voice and 2 for the second voice. The third voice
option applies to voice 2 s ability to produce either a tone or noise.

Voice 1 —This voice plays only tones. Select this voice with a 1 after the
SOUND command.
Voice 2 This voice is like voice 1, but can be used to play tones or
noise for sounds. Type a 2 in the command to use this voice for tones,
or a 3 to use this voice for noise, to make sound effects like thunder
and rain.
The second number after the word SOUND is the note value (fre
quency). This can be any number from 0 to 1023. It tells your Plus/4
how low- or high-pitched a note to play. As the numbers get larger, the
notes get higher. The highest values (in the 1023 neighborhood) are
not audible to the human ear.

Note: Noise is “white" only in the range of 600-940 with Voice 3.
You can use register values outside this range to create interest
ing sound effects.

106

Here is a chart that shows all of the notes in one scale, along with the
note value to use. There is a complete chart of notes for the Plus/4 in

Try the following program on your Plus/4:

NEW

10 VOL 7 -----
20X = 0
30 DO
40SOUND1,X,5 -----
50 X = X + 5
60 LOOP UNTIL X = 1020
70 VOL 0 ----
80 END

turns off VOLume

plays note

sets VOLume

Type RUN and press RETURN . This program allows your Plus/4
to show off some of its musical range.

The third number after the word SOUND controls the duration (length)
of the note. This tells the Plus/4 how long to play the note. This number
can be anything from 0 to 65535. This number sets a timer, which
counts time in sixtieths of a second. A duration of 60 keeps the note on
for one second. A rule of thumb for duration is the larger the number,
the longer the note stays on. In fact, if you use 65535, the note stays on
for over 16 minutes. To turn a sound off, use a zero duration, which
does not allow the sound to be produced.

107

••rrtrtrttc•ttccttce
 tttcttti

A Sound effects can be created using either musical tones or noise.
|||Cir Al Combining simple BASIC programs and sound commands can gener
cniiun ate unusual and entertaining effects. For instance, the FOR... NEXT...

STEP loop can be used creatively in sound effects. This program uses
EFFECT a FOR... NEXT loop with a negative step, to count down from a high

number to a lower one.

sets VOLume at 810 VOL 8 -----
20 FOR S = 1000 TO 700 STEP -25
30 SOUND 1, S, 1
40 NEXT S

creates loop, with
downward STEPs

Type RUN and press RETURN to hear the sound effect. The key is
line 20, which selects a number range from 1000 to 700 going down
the scale, STEPping down 25 numbers at a time. Finally, line 30 in
structs your Plus/4 to play each note for just an instant by setting the
DURATION to 1, which is 1/60 of a second. Experimenting with dif
ferent number and duration values can give you some very interest
ing effects.

108

CREATING Using 3 vsluc of 3 when selecting 3 voice in the SOUND commend
A NOISE specifies noise. This is used to create sound effects with noise rather

SOUND than tone. The following program uses voice 3 to create the sounds of
£PP£QT a windstorm.

10 VOL 2 -----
20R=INT(RND(0)*10) + l^
30FORX=1 TOR
40 SOUND 3, 600+30*X, 10
50 NEXT X
60 FOR X=R TO 1 STEP -1
70 SOUND, 3,600 + 30*X, 10
80 NEXT X
90 T=INT(RND(0)*100)+30
100 SOUND 3, 600, T
110 GOTO 20

sets VOLume level

selects RaNDom
number from 1 to 10

Lines 30 and 60 set up loops for the note value (frequency) of the
sound, one increasing and one decreasing, based on the random
number from line 20. It is important to have variation in pitch, since
windstorms have different forces of gusts of wind. Lines 40 and 70 are
the SOUND commands that create the noise. Lines 90 and 100 set up
a random delay to recreate the uneven nature of a windstorm with time
lapses between howls. The program selects a RaNDom number that
is used for the duration of another SOUND command. This SOUND
command stays at the same pitch and provides a consistent back
ground noise that serves as a counterpoint to the gusts of wind.

Creating sound effects using noise is extremely challenging, trying
to capture the right elements of the sound you want exactly. To create
good sound effects, you have to be willing to experiment.

109

MAKING Now that we’ve looked at some ways to create sound effects on your
SOME Plus/4'lets make some music- Here are a C0UPle of Programs t0 trV-

MUSIC The first program turns the keys from 1 through 8 into a piano. Type in
the program and then type RUN.

5SCNCLR ------------------------------------
10FORX = 1 TO 8: READN(X): NEXT X

clears the screen

20 VOL 7
30 DO
40 GET A$: IFA$ = “ ” THEN 40
50A=ASC(A$): IFA<49 ORA>56 THEN 90
60N=A—48
70 SOUND 1, N(N), 5
80 COLOR 0, N, 3
90 LOOP UNTIL A=32
100 VOLO: COLOR4, 2, 7
110 DATA 169, 262, 345, 383, 453, 516, 571, 596

Press numbers 1 through 8 to play notes. The screen border even
changes colors with the different notes. When you finish playing, press
the space bar to stop the program.

Here are the numbers to press for a familiar song:

Twinkle, Twinkle Little Star
1 1 5 5 6 6 5
4 4 3 3 2 2 1
5 5 4 4 3 3 2
5 5 4 4 3 3 2
1 1 5 5 6 6 5
4 4 3 3 2 2 1

1 1 5 5 6 6 5

110

This program plays a song by reading a list of DATA statements. The
DATA statements are in pairs. The first number is the note value for the
SOUND command and the second number is the duration for the
SOUND command.

Row Boat
10 VOL 8
20 DO
30 READ X, Y
40 SOUND 1, X, Y
45FORD = 1 TO 550:NEXT —
50 LOOP UNTIL X=0
60 END
100 DATA 169, 45, 169, 45, 169, 30
110 DATA 262, 15, 345, 45, 345, 30
120 DATA 262, 15, 345, 30, 383, 15
130 DATA 453, 60, 596, 45, 453, 45
140 DATA 345, 45, 169, 45, 453, 30
150 DATA 383, 15, 345, 30, 262, 15
160 DATA 169, 60
200 DATA 0, 0

This loop creates
a brief delay
between notes

This program plays notes going up and down scales at different
speeds, and displays some color bars along with them.

10 VOL 8
20 DO
30D=INT (RND(0) *5)+ 2: REM DURATION
40 S=INT (RND(0) *300)+ 700 : REM START
50 R=INT (RND(0) *(1020—S)): REM RANGE
60 P=INT (RND(0) *30)+ 5: REM STEP
70T=SGN (RND(l) - .5): IFT=0THEN70
80 FOR Z=S TO S + T*R STEP P*T
90 SOUND 1, Z, D
100 Y=(ZAND 15) + 1: FORX=1 TOD
110 PRINT CHR$(18);:COLOR 1, Y: PRINT “
120 NEXT X, Z A
130 LOOP pl--------------------------

leave a space here

these REMark state
ments help you keep
track of which line
does what

111 • t
tc

ai
itt

oc
tM

ti
i

iititttiiieitrtcttt•<
r 11

THE
GREAT
PLUS/4
MUSIC

MACHINE

The last program is a little longer. This is the “GREAT PLUS/4 MUSIC
MACHINE”. When you press a key from 1 through 9, the note is played,
and a note appears on the staff on the correct line.

5 GOSUB 1000
6 FOR X=1 TO 9: READ N(X): NEXT X
8 CHAR 1, 8, 1,“*THE GREAT MUSIC MACHINE*’
10 VOL 7___________________
20 DO
30 GETA$: IF A$ = “” THEN 30
35A=ASC(A$): IFA<49 ORA>57 THEN 50
36N= A - 48
40 SOUND 1, N(N), 4
45 GSHAPE N$, 150, 8 * (6 + (9-N)), 4
46 FOR Z = ITO 50: NEXT Z
47 GSHAPE N$, 150, 8 * (6 + (9-N)), 4
50 LOOP UNTIL A=32
55 VOL 0: GRAPHIC 0: SCNCLR
60 END
100 DATA 345, 383, 453, 516, 571, 596, 643, 685, 704
1000 GRAPHIC 1,1
1010 FOR Y=60 TO 124 STEP 16
1020 DRAW 1, 100, Y TO 200, Y
1030 NEXT Y
1040 A$ = “FEDCBAGFE”
1050 FOR X=1 TO 9: C = 13
1060 IF INT(X/2) = X/2 THEN C = 14
1070 CHAR 1, C, X + 6, MID$ (A$, X, 1), 0
1075 CHAR 1, C + 10, X + 6, RIGHTS (STR$ (10-X), 1)
1080 NEXT X
1090 FOR X=1 TO 8: FORY=11 TO 16: DRAW 1, X, Y: NEXT Y, X
1100 Y=l: X=8: DRAW 1, 8, 16 TO X, Y
1110 SSHAPE N$, 1, 1, 8, 16
1120 GSHAPE N$, 1, 1, 4
1130 RETURN

no space

As you can see, it’s not hard to write your own sound programs. The
ones in this chapter just give a taste of the music capabilities of your
Plus/4. Don’t be afraid to try new sounds and noises and create your
own masterpiece.

(M

PLUS/4
ENCYCLOPEDIA • t

os
t

A
The Plus/4 Encyclopedia contains information useful for both the com
puter novice and expert. Some sections are musts for beginners, like
the BASIC 3.5 Encyclopedia, which lists and explains all the BASIC
commands, statements and terminology. Other sections will be use
ful for those computerists whose knowledge extends beyond BASIC.
TEDMON, the Plus/4’s machine language monitor, provides some di
rection for machine language programming on the Plus/4. Other sec
tions can be helpful for all Plus/4 owners... listings of error messages,
programs to try out, the musical note table, and more. The Plus/4 En
cyclopedia has something for all Plus/4 programmers, whether you’re
just beginning to experiment or you’re a high-level programmer.

114

BASIC
3.5

ENCYCLOPEDIA

This manual has given you an introduction to the BASIC language, to
give you a feel for computer programming and some of the vocabulary
involved. This encyclopedia gives a complete list of the rules (SYNTAX)
of the BASIC 3.5 language, along with a concise description of each.
Experiment with these commands, and remember that you can’t dam
age your Plus/4 by typing in programs, and that the best way to learn
computing is by doing.

The encyclopedia provides formats and brief explanations and
examples of the BASIC 3.5 commands and statements. It is not in
tended to teach BASIC. If you are interested in learning BASIC,
Section 14 lists tutorial books that will help.

Commands and statements are listed in separate sections. Within the
sections, the commands and statements are listed in alphabetical
order. Commands are used mainly in direct mode, while statements
are most often used in programs. In most cases, commands can be
used as statements in a program if you prefix them with a line number.
You are able to use many statements as commands by issuing them in
direct mode (i.e., without line numbers).

The different types of operations in BASIC are listed in sections based
on the following criteria:

• COMMANDS: the commands used to work with programs, edit,
store, and erase them.

• STATEMENTS: the BASIC program statements used in numbered
lines of programs.

• FUNCTIONS: the string, numeric, and print functions.
• VARIABLES AND OPERATORS: the different types of variables,

legal variable names, and arithmetic and logical operators.

A fuller explanation of BASIC 3.5 commands is provided in the Plus/4
Programmer’s Reference Guide, available from your Commodore
dealer or your local bookstore.

115

COMMAND
AND

STATEMENT
FORMAT

The commands and statements presented in this section of the ency
clopedia are governed by consistent format conventions designed to
make them as clear as possible. In most cases, there are several ac
tual examples to illustrate what the actual command looks like. The
following example shows some of the format conventions that are
used in the BASIC commands and statements:

The parts of the command or statement that you must type in exactly as
they appear are highlighted in boldface type in the format listing, while
the name of the command is in capital letters. The words that you don’t
type in exactly, such as the name of a program, are printed in italics.
When quote marks (“ ”) appear (usually around a program or file
name), you should include them in the appropriate place according
to the format example.

• KEYWORDS, also called RESERVED WORDS, appear in upper
case letters and boldface type. YOU MUST ENTER THESE
KEYWORDS EXACTLY AS THEY APPEAR. However, many key
words have abbreviations that you can also use (see Section 2).

Keywords are words that are part of the BASIC language that your
computer knows. Keywords are the central part of a command or
statement. They tell the computer what kind of action you want it to
take. These words cannot be used as variable names.

• ARGUMENTS (also called parameters) appear in lower-case italics.
Arguments are the parts of a command or statement that you select;
they complement keywords by providing specific information about
the command or statement. For example, a keyword tells the com
puter to load a program, while an argument tells the computer which
specific program to load and a second argument specifies which
drive the disk containing the program is in. Arguments include
filenames, variables, line numbers, etc.

• SQUARE BRACKETS [] show OPTIONAL arguments. You
select any or none of the arguments listed, depending on
your requirements.

• ANGLE BRACKETS <> indicate that you MUST choose one
of the arguments listed.

116

• VERTICAL BAR separates items in a list of arguments when your
choices are limited to those arguments listed, and you can’t use any
other arguments. When the vertical bar appears in a list enclosed
in SQUARE BRACKETS, your choices are limited to the items in
the list, but you still have the option not to use any arguments.

• ELLIPSIS ..., a sequence of three dots, means that an option or
argument can be repeated more than once.

• QUOTATION MARKS “ ” enclose character strings, filenames, and
other expressions. When arguments are enclosed in quotation
marks in a format, you must include the quotation marks in your
command or statement. Quotation marks are not conventions
used to describe formats; they are required parts of a com
mand or statement.

• PARENTHESES () When arguments are enclosed in parentheses
in a format, you must include the parentheses in your command
or statement. Parentheses are not conventions used to describe
formats; they are required parts of a command or statement.

• VARIABLE refers to any valid BASIC variable name, such as X, A$,
or T%.

EXPRESSION means any valid BASIC expression, such as A+B + 2
or ,5*(X+3).

BASIC
COMMANDS

AUTO

BACKUP

AUTO [h'ne#]

Turns on the automatic line numbering feature which eases the job of
entering programs by typing the line numbers for you. As you enter
each program line and press RETURN the next line number is
printed on the screen, with the cursor in position to begin typing that
line. The [line#] argument refers to the increment between line num
bers. AUTO with NO ARGUMENT turns off auto line numbering, as
does RUN. This statement is executable only in direct mode.

EXAMPLE: ________ _
AUTO 10 ~

automatically
numbers line in
increments often

AUTO 50 -<l-----------------------

AUTO
automatically
numbers line in
increments of fifty

turns OFF automatic
line numbering

BACKUP Ddr/ve# TO Ddr/Ve# [, ONUun/t#]

This command copies all the files on a diskette to another diskette on
a dual drive system. You can copy onto a new diskette without first
using the HEADER command to format the new diskette because the
BACKUP command copies all the information on the diskette, in
cluding the format. You should always BACKUP important diskettes in
case the original is lost or damaged.

Because the BACKUP command also HEADERS diskettes, it destroys
any information on the diskette onto which you’re copying information.
So if you’re backing up onto a previously used diskette, make sure it
contains no programs you wish to keep. See also the COPY command.

NOTE: This command can only be used with dual disk drives.

EXAMPLE:
BACKUP DO TO DI

BACKUP DO TO DI, ON U9

Copies all files from
the disk in drive 0 to
the disk in drive 1

Copies all files from
drive 0 to drive 1 in
disk drive unit 9

118

COLLECT COLLECT [Ddr/ve#] [,ON Uun/f#]

Use this command to free up space allocated to improperly closed
files and delete references to these files from the directory.

EXAMPLE:

COLLECT DO

CONT CONT
(Continue)

This command is used to re-start the execution of a program that has
been stopped by either using the STOP key, a STOP statement, or an
END statement within the program. The program will resume execution
where it left off. CONT will not work if you have changed or added lines
of the program (or even just' moved the cursor to a program line and hit

RETURN without changing anything), if the program stopped due
to an error, or if you caused an error before trying to re-start the pro
gram. The error message in this case is CAN’T CONTINUE ERROR.

COPY COPY [Ddrive#,] “source file" TO [DoY/ve#,] “other file’’ [,ON Uun/1#]

COPYs a file on the disk in one drive (the source file) to the disk in the
other on a dual disk drive only, or creates a copy of a file on the same
drive (with a different file name). _______________

EXAMPLES: Copies "test” from
drive 0 to drive 1, re-

COPY DO, “test" to D1, "test prog" naming it "test prog”
on drive 1.

COPY DO, “STUFF" TO DI, “STUFF” Copies "STUFF” from
drive Oto drive 1.

COPY DO TO DI -<•-
Copies all files from
drive Oto drive 1.

COPY “WORK.PROG" TO “BACKUP”
Copies
"WORK.PROG”
as a program called
"BACKUP" on the
same drive.

119

i ••
•••

••e
•••

•••
•••

•••
•t(

DELETE DELETE [first line#] [- last line#]

Deletes lines of BASIC text. This command can be executed only in
direct mode.

EXAMPLES:

DELETE 75

DELETE 10 - 50

DELETE - 50

DELETE - 75

DIRECTORY DIRECTORY [Ddr/Ve#] [, Uun/1#] [“filename”]

Displays a disk directory on the Plus/4 screen. Use CTRL -S to
pause the display (any other key restarts the display after a pause).
Use the C* key (the Commodore key) to slow it down. The
DIRECTORY command cannot be used to print a hard copy. You
must load the disk directory (destroying the program currently in
memory) to do that.

EXAMPLES:

DIRECTORY DI, U9, “WORK”

DIRECTORY

120

LOAD“$0”,8
OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

DLOAD DLOAD "filename" [,Ddrive#] [JJunit#]

This command loads a program from disk into current memory. (Use
LOAD to load programs on tape.) You must supply a program name.

EXAMPLES:

DLOAD “BANKRECS

DLOAD (A$)

Searches the disk
for the program
“BANKRECS” and
LOADs it.

LOADs a program
from disk whose
name is in the variable
A$. You will get an
error if A$ is empty.

The DLOAD command can be used within a BASIC program to find
and RUN another program on disk. This is called chaining.

121

DSAVE DSAVE “fi/ename” [,Ddr/Ve#] [,Ut/n/Y#]

This command stores a program on disk. (Use SAVE to store programs
on tape.) You must supply a program name.

EXAMPLES:

DSAVE “BANKRECS SAVEs the program
“BANKRECS” to disk.

DSAVE (A$)

DSAVE “PROG 3’’, D0,U9

SAVEs to disk pro
gram whose name
is in the variable A$.

SAVEs the program
“PROG 3” to the disk
drive with a unit num
ber (Serial bus ad
dress) of 9.

HEADER HEADER “d/skname” [,I/.d.#] ,Ddr/ve# [,ON Uun/l#]

Before you can use a new diskette for the first time you must format it
with the HEADER command. If you want to erase an entire diskette for
reuse you can use the HEADER command. This command divides the
disk into sections called blocks, and it creates a table of contents,
called a directory or catalog, on the disk. The diskname can be any
name up to 16 characters long. The i.d. number is any 2 characters.
Give each disk a unique i.d. number. Be careful when you HEADER a
disk because the HEADER command erases all stored data. Giving no
i.d. number allows you to perform a quick header. The old i.d. number
is used. You can only use the quick header method if the disk was pre
viously formatted, since the quick header only clears out the directory
rather than formatting the disk.

EXAMPLES:

HEADER “MYDISK”, 123, DI
HEADER “RECS”, 145, DI, U8

122

HELP HELP

The HELP command is used after you get an error in your program.
When you type HELP, the line where the error occurred is listed, with
the portion containing the error displayed in flashing characters.

KEY KEY ^ey #, string]

There are eight (8) function keys available to the user on the Plus/4
computer: four unshifted and four shifted. The Plus/4 allows you to
define what each key does when pressed.

KEY without any parameter specified gives a listing displaying all the
current KEY assignments. The data you assign to a key is typed out
when that function key is pressed. The maximum length for all the
definitions together is 128 characters. Entire commands (or a
series of commands) can be assigned to a key. For example:

KEY 7, “GRAPHICO” + CHR$(13) + “LIST” + CHR$(13)

causes the computer to select text mode and list your program
whenever the ‘F7’ key is depressed (in direct mode). The CHR$(13) is
the ASCII character for RETURN . Use CHR$(34) to incorporate a
double quote into a KEY string.

The keys may be redefined in a program. For example:

10 KEY 2,“TESTING” + CHR$(34):KEY3, “NO”
10FORI=1 TO8:KEYI, CHR$(I+132):NEXT

defines the function
keys as they are de
fined on the Commo
dore 64 and VIC 20

To restore all function keys to their default values, reset the Plus/4 by
turning it off and on, or press the RESET button.

123

LIST list [first line#] [-[lastline#]]

The LIST command lets you look at lines of a BASIC program that have
been typed or LOADed into the PIus/4’S memory. When used alone
(without any numbers following it), the Plus/4 gives a complete LISTing
of the program on your screen, which may be slowed down by holding
down the O key, paused by CTRL S (unpaused by press
ing any other key), or STOPped by hitting the RUN/STOP key. If
you follow the word LIST with a line number, the Plus/4 only shows that
line number. If you type LIST with two numbers separated by a dash,
the Plus/4 shows all lines from the first to the second line number. If
you type LIST followed by a number and just a dash, it shows all the
lines from that number to the end of the program. And if you type LIST,
a dash, and then a number, you get all the lines from the beginning
of the program to that line number. Using these variations, you can
examine any portion of a program, or easily bring lines to the screen
for modification.

EXAMPLES:

LIST

LIST 100-

LIST 10

LIST-100

LIST 10-200

Shows entire
program.

Shows from line
100 until the end
of the program.

Shows only line 10.

Shows lines from
the beginning until
line 100.

Shows lines from
10 to 200, inclusive.

LOAD LOAD [“filename”][,device#] [.relocate flag]

This is the command to use when you want to use a program stored on
cassette tape or on disk. If you type just LOAD and hit the RETURN
key, the Plus/4 screen goes blank. Press play, and the Plus/4 starts

looking for a program on the tape. When it finds one, the Plus/4 prints
FOUND "filename’’. You can hit the ■■ key to LOAD. Once the pro
gram is LOADed, you can RUN, LIST, or change it.

You can also type the word LOAD followed by a program name, which
is most often a name in quotes ("program name"). The name may be
followed by a comma (outside of the quotes) and a number (or numeric
variable), which acts as a device number to determine where the pro
gram is stored (disk or tape). If there is no number given, the Plus/4
assumes device number 1, which is the cassette tape recorder.

The other device commonly used with the LOAD command is usually
the disk drive, which is device number 8.

EXAMPLES:

LOAD

LOAD “HELLO”

LOAD A$

LOAD “HELLO”,8

Reads in the next
program on tape

Searches tape for a
program called
HELLO, and LOADS
if found.

Looks for a program
whose name is in the
variable called A$.
Looks for the pro-
gram called HELLO
on the disk drive,
or the program
last accessed.

The LOAD command can be used within a BASIC program to find
and RUN the next program on a tape. This is called chaining.

The RELOCATE FLAG determines where in memory a program is
loaded. A relocate flag of 0 tells the Plus/4 to load the program at the
start of the BASIC program area, and a flag of 1 tells it to LOAD from
the point where it was SAVEd. The default value of the relocate flag is 0.
This is generally used only when loading machine language programs.

125

• •••••••••••••••••••••••a
j a

I)
J)

] J
 J

I J
 J

} J
]

I)
)

I 1
 3

1 I
))

)
))

)
>

NEW NEW

RENAME

This command erases the entire program in memory and clears out
any variables that may have been used. Unless the program was
stored somewhere, it is lost until you type it in again. Be careful when
you use this command.

The NEW command can also be used as a statement in a BASIC
program. When the Plus/4 gets to this line, the program is erased
and everything stops. This is not especially useful under normal
circumstances.

RENAME [,Dd/7ve #] “old name" TO “new name" [,Uunit #]

Used to rename a file on a diskette.

EXAMPLE:

RENAME “TEST” TO “FINALTEST”
Changes the name of
the file “TEST” to
“FINALTEST”

RENUMBER RENUMBER ^ew Starting line # [,increment [,old starting line #]]]

The new starting line is the number of the first line in the program after
renumbering. It defaults to 10.

The increment is the spacing between line numbers, i.e. 10, 20, 30 etc.
It also defaults to 10.

The old starting line number is the line number in the program where
renumbering is to begin. This allows you to renumber a portion of your
program. It defaults to the first line of your program.

This command can only be executed from direct mode.

EXAMPLES:

RENUMBER 20, 20, 1
Starting at line 65,
renumbers in incre
ments of 10. Line 65
becomes line 10.

126

RENUMBER, , 65
Starting at line 1,
renumbers the
program. Line 1
becomes line 20,
and other lines are
numbered in incre
ments of 20.

RUN RUN[//ne#]

Once a program has been typed into memory or LOADed, the RUN
command makes it start working. RUN clears all variables in the pro
gram before starting program execution. If there is no number follow
ing the command RUN, the computer starts with the lowest numbered
program line. If there is a number following the RUN command execu
tion starts at that line. RUN may be used within a program.

EXAMPLES:

RUN

RUN 100

Starts program
working from lowest
line number.

Starts program at
line 100.

SAVE SAVE [“filename" [,device# [,EOTflag]]]

This command stores a program currently in memory onto a cassette
tape or disk. If you just type the word SAVE and hit return
the Plus/4 attempts to store the program on the cassette tape. It has no
way of checking if there is already a program on the tape in that loca
tion, so be careful with your tapes. If you type the SAVE command fol
lowed by a name in quotes or a string variable name, the Plus/4 gives
the program that name, so it may be more easily located and retrieved
in the future. If you want to specify a device number for the SAVE, fol
low the name by a comma (after the quotes) and a number or numeric
variable. Device number 1 is the tape drive, and number 8 is the disk.
After the number on a tape command, there can be a comma and a
second number, which is either 0 or 1. If the second number is 1, the
Plus/4 puts an END-OF-TAPE marker (EOT flag) after your program. If

127 • r
tf

Ilt
O

tlO
IJ

Itl
ltO

ttJ
tlt

ttl
O

O
l

SCRATCH

VERIFY

trying to LOAD a program and the Plus/4 finds one of these markers
rather than the program you are trying to LOAD, you get a FILE NOT
FOUND ERROR.

EXAMPLES:

SAVE

SAVE “HELLO”

SAVE A$

SAVE “HELLO”, 8

SAVE “HELLO”, 1,2

— ! !

Stores program to
tape without a name

Stores on tape with
the name HELLO

Stores on tape with
name in variable A$

Stores on disk with
name HELLO

Stores on tape with
name HELLO and
places an END-OF-
TAPE marker after
the program.

SCRATCH “file name” [,D drive #] [,U unit #]

Deletes a file from the disk directory. As a precaution, you are asked
“Are you sure’’ before the Plus/4 completes the operation. Type a Y to
perform the SCRATCH or type N to cancel the operation. Use this
command to erase unwanted files, to create more space on the disk.

EXAMPLE:

SCRATCH “MY BACK”, DI
Erases the file MY
BACK from the disk
in drive 1

VERIFY “filename’’ [.device#] [.relocate flag]

This command causes the Plus/4 to check the program on tape or disk
against the one in memory. This is proof that the program you just
SAVEd is really saved, in case your tape is bad or something isn’t
working. This command is also very useful for positioning a tape so that
Plus/4 writes after the last program on the tape. All you do is tell the

128

Plus/4 to VERIFY the name of the last program on the tape. It will do so,
and tell you that the programs don’t match (which you already knew).
Now the tape is where you want it, and you can store the next program
without fear of erasing an old one.

VERIFY without anything after the command causes the Plus/4 to
check the next program on tape, regardless of its name, against the
program now in memory. VERIFY followed by a program name (in
quotes) or a string variable searches the tape for that program and
then checks. VERIFY followed by a name and a comma and a number
checks the program on the device with that number (1 for tape, 8 for
disk). The relocate flag is the same as in the LOAD command.

EXAMPLE:

VERIFY

VERIFY “HELLO”

VERIFY “HELLO”,8,1

Checks the next pro
gram on the tape.

Searches for HELLO
on tape, checks
against memory.

Searches for HELLO
on disk, then checks.

II f
 K

ttl
ttl

lll
tll

lC
St

tlS
tt

.

ittctttctttrtttctccrtctcciu

BASIC
STATEMENTS

BOX

BOX [color source #],a1, b1, a2, b2. [[,angle] [,paint]]

color source Color source (0-3); default is 1 (foreground
color)

a1, b1 Corner coordinate (scaled)
a2, b2 Corner opposite a1, b1 (scaled); default is

the PC
angle Rotation in clockwise degrees; default is

0 degrees
paint Paint shape with color (O:off, 1 :on); default

is 0

This command allows you to draw a rectangle of any size anywhere on
the screen. To get the default value, include a comma without entering
a value. Rotation is based on the center of the rectangle. The Pixel
Cursor (PC) is left at a2, b2 after the BOX statement is executed.

EXAMPLES:

BOX 1, 10, 10, 60, 60

BOX , 10, 10, 60, 60, 45, 1

BOX, 30, 90, ,45, 1

Draws the outline of a
rectangle

Draws a filled, rotated
box (a diamond)

Draws a filled, rotated
polygon

CHAR CHAR [color source #] ,x,y [.text string] [.reverse flag]

Alternate:

CHAR [color source #] ,x,y [“text string”] [.reverse flag]

color source Color source (0-3)
x Character column (0 - 39)
y Character row (0-24)
string String to print
reverse Reverse field flag (0 = off, 1 = on)

130

Text (alphanumeric strings) can be displayed on any screen at a given
location by the CHAR command. Character data is read from Plus/4
character ROM area. You supply the x and y coordinates of the starting
position and the text string you want to display. Color source and re
verse imaging are optional.

The string is continued on the next line if it attempts to print past the
right edge of the screen. When used in TEXT mode, the string printed
by the CHAR command works just like a PRINT string, including re
verse field, cursors, flash on/off, etc. These control functions inside the
string do not work when the CHAR command is used to display text in
GRAPHIC mode.

NOTE: when in multicolor mode, to display a character in multi
color 2, set the color source to 0 and reverse flag to 1. To display
a character in multicolor 1, set the color source to 0 and the
reverse flag to 0.

CIRCLE CIRCLE [cs] > xr [’ [’ [sa] [’ [aa] [, [angle] [,lnc]]]]]

cs Color source (0-3)
a,b Center coordinate (scaled)

(defaults to the Pixel Cursor [PC])
xr X radius (scaled)
yr Y radius (default is xr)
sa Starting arc angle (default 0)
ea Ending arc angle (default 360)
angle Rotation in clockwise degrees

(default is 0 degrees)
inc Degrees between segments

(default is 2 degrees)

131 rt
C

St
ttl

tlt
lti

tfM
tC

ItC
tlt

tt

With the CIRCLE command you can draw a circle, ellipse, arc, triangle
or an octagon. The final coordinate is on the circumference of the
circle at the ending arc angle. Any rotation is about the center. Set
ting the Y radius equal to the X radius does not draw a circle, since the
X and Y coordinates are scaled differently. Arcs are drawn from the
starting angle clockwise to the ending angle. The segment increment
controls the coarseness of the shape, with lower values for inc creating
rounder shapes.

EXAMPLES:

CIRCLE , 160,100,65,10
CIRCLE , 160,100,65,50
CIRCLE , 60,40,20,18„„45
CIRCLE , 260,40,20,„„90
CIRCLE , 60,140,20,18„„120

Draws an ellipse.
Draws a circle.
Draws an octagon.
Draws a diamond.
Draws a triangle.

CLOSE CLOSEff/e#
This command completes and closes any files used by OPEN state
ments. The number following the word CLOSE is the file number to
be closed.

EXAMPLE:

CLOSE 2

CLR

Logical file 2 is
closed.

This command erases any variables in memory, but leaves the pro
gram itself intact. This command is automatically executed when a
RUN or NEW command is given, or when any editing is performed.

CMD CMD file # Lwrite

CMD sends the output which normally would go to the screen (i.e.
PRINT statement, LISTS, but not POKEs into the screen) to another
device instead. This could be a printer, or a data file on tape or disk.
This device or file must be OPENed first. The CMD command must
be followed by a number or numeric variable referring to the file.

132

EXAMPLES:

OPEN 1,4

CMD 1

LIST

PRINT# 1

CLOSE 1

COLOR COLOR source #, color # [,luminance #]

Assigns a color to one of the 5 color sources:

Number Source
0 background
1 foreground
2 multicolor 1
3 multicolor 2
4 border

Colors you can use are in the range 1-16 (BLACK, WHITE ...). As an
option, you can include the luminance level 0-7, with 0 being lowest
and 7 being highest. Luminance defaults to 7. Luminance lets you
select from eight levels of brightness for any color except black.

DATA DATA list of constants separated by commas

This statement is followed by a list of items to be used by READ state
ments. The items may be numbers or words, and are separated by
commas. Words need not be inside of quote marks, unless they con-

133

«•

tain any of the following characters: SPACE, colon, or comma. If two
commas have nothing between them, the value will be READ as a zero
for a number, or an empty string. Also see the RESTORE statement,
which allows the Plus/4 to re-read data.

EXAMPLE:

DATA WO, 200, FRED, “HELLO,MOM”, , 3, 14, ABC123

DEF FN DEF FN name (variable) = expression

(DEFine FunctioN)

This command allows you to define a complex calculation as a func
tion. In the case of a long formula that is used several times within a
program, this can save a lot of space. The name you give the function
begins with the letters FN, followed by any legal numeric variable
name. First you must define the function by using the statement DEF
followed by the name you have given the function. Following the name
is a set of parentheses () with a numeric variable (in this case, X) en
closed. Then you have an equal sign, followed by the formula you want
to define. You can “call” the formula, substituting any number for X,
using the format shown in line 20 of the example below:

DIM

20 PRINT FNA(7)

DIM variable (suoscripts) [,variable(subscripts)]...

The number 7 is in
serted each place X
is located in the for
mula given in the
DEF statement.

EXAMPLE:

10 DEF FNA(X) = 12*(34.75—X/.3)+X

Before you can use an array of variables, the program must first exe
cute a DIM statement to establish the DIMensions of that array (unless
there are 11 or fewer elements in the array). The statement DIM is fol
lowed by the name of the array, which may be any legal variable name.
Then, enclosed in parentheses, you put the number (or numeric vari
able) of elements in each dimension. An array with more than one di
mension is called a matrix. You may use any number of dimensions,
but keep in mind that the whole list of variables you are creating takes
up space in memory, and it is easy to run out of memory if you get car-

ried away. To figure the number of variables created with each DIM,
multiply the total number of elements in each dimension of the array.
(Each array starts with element 0.)

NOTE: Integer (single-digit) arrays take up 2/5ths of the space of
floating point arrays.

EXAMPLE:

DO/
LOOP/

WHILE/
UNTIL/

EXIT

You can dimension more than one array in a DIM statement by sepa
rating the arrays by commas. If the program executes a DIM statement
for any array more than once, you’ll get a re’DIMed array error mes
sage. It is good programming practice to place DIM statements near
the beginning of the program.

DO[UNTIL boolean argument WHILE boolean argument] state
ments [EXIT]

LOOP [UNTIL boolean argument WHILE boolean argument]

Performs the statements between the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP
statement, execution of the intervening statements continues indefi
nitely. If an EXIT statement is encountered in the body of a DO loop,
execution is transferred to the first statement following the LOOP
statement. DO loops may be nested, following the rules defined for
FOR-NEXT loops. If the UNTIL parameter is used, the program con
tinues looping until the boolean argument is satisfied (becomes
TRUE). The WHILE parameter is basically the opposite of the UNTIL
parameter: the program continues looping as long as the boolean
argument is TRUE. An example of a boolean argument is A=1, or
G>=65.

135

• •••!••••••□••>•••••••••••• •

EXAMPLE:

DO UNTIL X=0 OR X=1

LOOP
DO WHILE A$ = “ ”:GET
A$:LOOP

DRAW DRAWco/orsource #[, al, bl [TOa2, b2...]]

With this command you can draw individual dots, lines, and shapes.
You supply color source (0-3), starting (a1, b1) and ending points
(a2, b2).

EXAMPLES:

END END
When the program executes an END statement, the program stops
RUNning immediately. You may use the CONT command to re-start the
program at the statement following the END statement.

FOR...
TO...
STEP

FOR variable = start value TO end value [STEP increment]

This statement works with the NEXT statement to set up a section of the
program that repeats for a set number of times. You may just want the
Plus/4 to count up to a large number so the program pauses for a few

136

seconds, in case you need something counted, or something must be
done a certain number of times (such as printing).

The loop variable is the variable that is added to or subtracted from
during the FOR/NEXT loop. The start value and the end value are the
beginning and ending counts for the loop variable.

The logic of the FOR statement is as follows: First, the loop variable is
set to the start value. When the program reaches a line with the com
mand NEXT, it adds the STEP increment (default = 1) to the value of
the loop variable and checks to see if it is higher than the end of loop
value. If it is not higher, the next line executed is the statement im
mediately following the FOR statement. If the loop variable is larger
than the end of loop number, then the next statement executed is the
one following the NEXT statement. See also the NEXT statement.

EXAMPLE:

10 FOR L = 1 TO 10
20 PRINT L
30 NEXT L
40 PRINT “I’M DONE! L = ”L

This program prints the numbers from one to ten on the screen fol
lowed by the message I’M DONE! L = 11.

The end of loop value may be followed by the word STEP and another
number or variable. In this case, the value following the STEP is added
each time instead of one. This allows you to count backwards, by frac
tions, or any way necessary.

You can set up loops inside one another. This is known as nesting
loops. You must be careful to nest loops so that the last loop to start is
the first one to end.

EXAMPLE OF NESTED LOOPS:

10 FOR L = 1 TO 100

20 FOR A = 5 TO 11 STEP 2

30 NEXT A

40 NEXT L

This FOR... NEXT
loop is “nested” in
side the larger one.

137

aaaaaaaaaaaaoaaaeaaaaaaaaa

(c
c c c• a r

c c e c c • r t c • c t t
c c c c c •

c

GET

GETKEY

GET#

GET variable list

The GET statement is a way to get data from the keyboard one
character at a time. When the GET is executed, the character that
was typed is received. If no character was typed, then a null (empty)
character is returned, and the program continues without waiting for
a key. There is no need to hit the RETURN key, and in fact the
RETURN key can be received with a GET.
The word GET is followed by a variable name, usually a string variable.
If a numeric were used and any key other than a number was hit, the
program would stop with an error message. The GET statement may
also be put into a loop, checking for an empty result, which waits for
a key to be struck to continue. The GETKEY statement could also
be used in this case. This command can only be executed within
a program.

EXAMPLE: --------- ;--------- ;-------------
This line waits for the

10 GET A$:IF A$ <> “A” THEN 10 ◄— A key to be pressed
to continue.

GETKEY variable list

The GETKEY statement is very similar to the GET statement. Unlike
the GET statement, GETKEY waits for the user to type a character
on the keyboard. This lets it be used easily to wait for a single char
acter to be typed.
This command can only be executed within a program.

This line waits for
a key to be struck.
Typing any key
will continue the
program.

EXAMPLE:

10 GETKEY A$

GET# file number,variable list

Used with a previously OPENed device or file to input one character at
a time. Otherwise, it works like the GET statement. This command can
only be executed within a program.

138

EXAMPLE:

GET#1,A$

GOSUB GOSUB line #

This statement is like the GOTO statement, except that the Plus/4 re
members where it came from. When a line with a RETURN statement is
encountered, the program jumps back to the statement immediately
following the GOSUB. The target of a GOSUB statement is called a
subroutine. A subroutine is useful if there is a routine in your program
that can be used by several different portions of the program. Instead
of duplicating the section of program over and over, you can set it up
as a subroutine, and GOSUB to it from the different parts of the pro
gram. See also the RETURN statement.

EXAMPLE:

20 GOSUB 800 means go to the
subroutine begin
ning at line 800
and execute it.

800 PRINT “HI THERE’’:RETURN

GOTO GOTO ,ine #
or GO TO

After a GOTO statement is executed, the next line to be executed will
be the one with the line number following the word GOTO. When used
in direct mode, GOTO line # allows you to start execution of the pro
gram at the given line number without clearing the variables.

GRAPHIC

EXAMPLE:

10 PRINT“COMMODORE”
20 GOTO 10 ____

The GOTO in line 20
makes line 10 repeat
continuously until you
press RUN7STOP

GRAPHIC cmode clear option] / CLR>

This statement puts the Plus/4 in one of its 5 graphic modes:

139

aaaaaaaaaaaaaaaoaaeaaaaaaaaa

cctcaret reenter cereec rteccce

mode descri ption
0 normal text
1 high-resolution graphics
2 high-resolution graphics, split screen
3 multicolor graphics
4 muIticolor graphics, split screen

When executed, GRAPHIC 1-4 allocates a 10K bit-mapped area,
and the start of the BASIC text area is moved above the hi-res area.
This area remains allocated even if the user returns to TEXT mode
(GRAPHIC 0). If 1 is given in the GRAPHIC statement as the second
argument, the screen is also cleared. Executing a GRAPHIC CLR
command de-allocates the 10K bit-mapped area, and makes it avail
able once again for BASIC text and variables.

IE IF expression THEN then-clause [:ELSE e/se-c/ause]

THEN IF THEN lets the computer analyze a BASIC expression preceded
[...: ELSE | by IF and take one of two possible courses of action. If the expression

is true, the statement following THEN is executed. This expression may
be any BASIC statement. If the expression is false, the program goes
directly to the next line, unless an ELSE clause is present. The expres
sion being evaluated may be a variable or formula, in which case it is
considered true if nonzero, and false if zero. In most cases, there is an
expression involving relational operators (=, <, >, < = , > = , <>.
AND, OR, NOT).
The ELSE clause, if present, must be in the same line as the IF-THEN
part. When an ELSE clause is present, it is executed when the THEN
clause isn’t executed. In other words, the ELSE clause executes when
the IF expression is FALSE.

Then

140

EXAMPLE:

50 IF X>0 THEN PRINT “OK”:ELSE END

INPUT INPUT [prompt string;] variable list

Checks the value of
X. If X is greater than
0, the THEN clause
is executed, and the
ELSE clause isn’t. If
X is less than 0, the
ELSE clause is exe
cuted and the THEN
clause isn’t.

The INPUT statement allows the computer to ask for data from the per
son running the program and place it into a variable or variables. The
program stops, prints a question mark (?) on the screen, and waits for
the person to type the answer and hit the ■■■■■ key.

The word INPUT is followed by a variable name or list of variable
names separated by commas. There may be a message inside of
quotes before the list of variables to be input. If this message (called
a prompt) is present, there must be a semicolon (;) after the closing
quote of the prompt. When more than one variable is to be INPUT, they
should be separated by commas when typed in. If not, the computer
asks for the remaining values by printing two question marks (??). If
you press the RETURN key without INPUTting a value, the INPUT
variable retains the value previously input for that variable. This state
ment can only be executed within a program.
EXAMPLE:

10 INPUT “PLEASE TYPE A NUMBER’’;A
20 INPUT “AND YOUR NAME”;A$
30 INPUT B$
40 PRINT“BET YOU DIDN’T KNOW WHAT I WANTED! ’’

INPUT# INPUT# file number, variable list

This works like INPUT, but takes the data from a previously OPENed
file or device. No prompt string is allowed. This command can only
be used in program mode.

EXAMPLE:
INPUT#2, A$, C, D$

141

•
i o c m

i o 111 m
i i tt

ccccetct terete erect atcrctc ct

LET |LET] variable expression

The word LET is hardly ever used in programs, since it is not neces
sary, but the statement itself is the heart of all BASIC programs. When
ever a variable is defined or given a value, LET is always implied. The
variable name which is to get the result of a calculation is on the left
side of the equal sign, and the number or formula is on the right side.

EXAMPLE:

10 LET A = 5

20 B = 6
30 C = A * B + 3

40 D$ = “HELLO"

LOCATE LOCATE x-coordinate, y-coordinate

The LOCATE command lets you put the pixel cursor (PC) anywhere
on the screen. The PC is the current location of the starting point of the
next drawing. Unlike the regular cursor, you can't see the PC, but you
can move it with the LOCATE command. For example:

LOCATE 160, 100

positions the PC in the center of the high resolution screen. You won’t
see anything until you actually draw something. You can find out
where the PC is at any time by using the RDOT(O) function to get the
X-coordinate and RDOT(1) to get the Y-coordinate. The color source
of the dot at the PC can be found by printing RDOT(2). (In all drawing
commands where a color option is available, you may select a value
from 0 to 3, corresponding to the background, foreground, multicolor
1, or multicolor 2 as the color source.)

MONITORMONITOR
This command takes you out of BASIC into the built-in machine lan
guage monitor program. The monitor is used to develop, debug, and
execute machine language programs more easily than from BASIC.
See the section on monitor commands for more information. (When
in the monitor, typing an X and hitting RETURN gets you back
to BASIC.)___

142

NEXT NEXT [variable,... .variable]

The NEXT statement is used with the FOR statement. When the com
puter encounters a NEXT statement, it goes back to the corresponding
FOR statement and checks the loop variable. (See FOR statement for
more detail.) If the loop is finished, execution proceeds with the state
ment after the NEXT statement. The word NEXT may be followed by a
variable name, a list of variable names separated by commas, or no
variable names. If there are no names listed, the last loop started is the
one being completed. If the variables are given, they are completed in
order from left to right.

EXAMPLE:

10 FOR L = 1 TO 10:NEXT
20 FOR L = 1 TO 10:NEXTL
30 FOR L = 1 TO 10:FOR M = 1 TO 10: NEXT M, L

QU ON expression <GOTO/GOSUB> line #7 [, line #2,...]

This command can make the GOTO and GOSUB statements into spe
cial versions of the IF statement. The word ON is followed by a formula,
then either GOTO or GOSUB, and a list of line numbers separated by
commas. If the result of the calculation of the formula (expression) is
1, the first line in the list is executed. If the result is 2, the second line
number is executed, and so on. If the result is 0, or larger than the
number of line numbers in the list, the next line executed is the state
ment following the ON statements. If the number is negative, an
ILLEGAL QUANTITY ERROR results.

EXAMPLE:

10 INPUT X:IF X<0 THEN 10

20 ON X GOTO 50, 30, 30, 70

25 PRINT “FELL THROUGH”:GOTO 10

30 PRINT “TOO HIGH”:GOTO 10

50 PRINT “TOO LOW” .GOTO 10

When X = 1, ON
sends control to the
first line number in
the list.

When X = 2, ON
sends control to the
second line (30), etc.

70 END

143

OPEN OPEN file device # [,secondary address] [,“filename, type, mode"]

The OPEN statement allows the Plus/4 to access devices such as the
cassette recorder and disk for data, a printer, or even the screen of the
Plus/4. The word OPEN is followed by a logical file number, which is the
number to which all other BASIC statements will refer. This number is
from 1 to 255. There is always a second number after the first called the
device number. Device number 0 is the Plus/4 keyboard, 3 is the Plus/4
screen, 1 is the cassette recorder, 4 is the printer, 8 is usually the disk.
A zero (0) may be included in front of the device number digit (e.g., 08
for 8, which are interchangeable for the Plus/4). It is often a good idea
to use the same file number as the device number because it makes it
easy to remember which is which. Following the second number may
be a third number called the secondary address. In the case of the
cassette, this can be 0 for read, 1 for write, and 2 for write with end-
of-tape marker at the end. In the case of the disk, the number refers to
the channel number. In the printer, the secondary addresses are used
to set the mode of the printer. See the Plus/4 Programmer’s Reference
Manual or the manual for each specific device for more information for
more on secondary addresses. There may also be a string following
the third number, which could be a command to the disk drive or the
name of the file on tape or disk. The type and mode refer to disk files
only. (File types are prg.seq, rel, and usr; modes are read and write.)

EXAMPLES:

10 OPEN 3,3

10 OPEN 1,0

20 OPEN 1,1,0,“DOT”

OPEN 4,4

OPEN 15,8,15

OPENS the SCREEN
as a device.

OPENs the keyboard
as a device.

OPENs the cassette
for reading, file to be
searched for is
named DOT.

OPENs a channel to
use the printer.

OPENs the command
channel on the disk.

144

5 OPEN 8,8,12,“TESTFILE,SEQ,WRITE”- creates a sequential disk
file for writing.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements,
system variable ST, DS, and DS$.

PAINT PAINT [color source] [,[a,b] [,mode]]

Color source (0-3); (default is 1, foreground color)
a,b ...
mode .

.starting coordinate, scaled (default is at the PC)

.0 = paint an area defined by the color
source selected

1 = paint an area defined by any non
background source

The PAINT command lets you fill an area with color. It fills in the area
around the specified point until a boundary of the same color (or any
non-background color, depending on which mode you have chosen)
is encountered.

The final position of the PC will be at the starting point (a,b).

■ ■ ■ ■ ‘

NOTE: If the starting point is already the color of color source
you name (or any non-background when mode 1 is used), there
is no change.

EXAMPLE:

10 CIRCLE , 160,100,65,50^— draws outline of circle

20 PAINT , 160,100 fills in the circle
with color

145 ei
iii

ee
tte

iB
iii

tti
iie

tti
rr

ii

POKE POKE address, value

The POKE command allows you to change any value in the Plus/4 RAM
memory, and lets you modify many of the Plus/4 Input/Output registers.
POKE is always followed by two numbers, (or equations). The first
number is a location inside the Plus/4 memory. This could have any
value from 0 to 65535. The second number is a value from 0 to 255,
which is placed in the location, replacing any value that was there
previously.

EXAMPLE:

10 POKE 28000,8

20 POKE 28*1000,27 Sets location 28000
to 27.

Sets location 28000
to 8.

Note: PEEK is listed under FUNCTIONS.

PRINT PRINT P^ntHst

The PRINT statement is the major output statement in BASIC. While the
PRINT statement is the first BASIC statement most people learn to use,
there are many subtleties to be mastered here as well. The word PRINT
can be followed by any of the following:

Characters inside of quotes
Variable names
Functions
Punctuation marks

(“text lines’’)
(A, B, A$, X$)
(SIN(23), ABS(33))
(;,)

The characters inside of quotes are often called literals because they
are printed exactly as they appear. Variable names have the value
they contain (either a number or a string) printed. Functions also have
their number values printed. Punctuation marks are used to nelp for
mat the data neatly on the screen. The comma divides the screen into
4 columns for data, while the semicolon doesn't add any spaces.
Either mark can be used as the last symbol in the statement. This re
sults in the next PRINT statement acting as if it is continuing the last
PRINT statement.

146

EXAMPLE:

10 PRINT “HELLO”
20 A$= “THERE’ ’: PRINT ‘ ‘HELLO, ’ ’ A$
30 A=4:B = 2:PRINT A+B
50 J=41 :PRINT J; :PRINT J-1
60C=A+B:D=A-B:PRINT A;B;C,D

RESULT
HELLO
HELLO,THERE
6
41 40
4 2 6 2

See also: POS(), SPC(), and TAB() FUNCTIONS.

PRINT # PPINT# #, print list

There are a few differences between this statement and the PRINT
First of all, the word PRINT# is followed by a number, which refers to
the device or data file previously OPENed. The number is followed by a
comma, and a list of things to be PRINTed. The comma and semicolon
act in the same manner for spacing as they do in the PRINT statement.
Some devices may not work with TAB and SPC.

EXAMPLE:

100 PRINT#!,“HELLO THERE!”,A$,B$,

PRINT
USING

PRINT [tffilenumber] USING format list; print list;

These statements let you define the format of string and numeric items
you want to print to the screen, printer, or another device. Put the for
mat you want in quotes. This is the format list. Then add a semicolon
and a list of what you want printed in the format for the print list. The list
can be variables or the actual values you want printed. For example:

5X = 32: Y=100.23: A$=“CAT”
10 PRINT USING “$##.##”; 13.25,X,Y
20 PRINT USING “###>#”;“CBM”, A$

When you RUN this, line 10 prints out:

$13.25 $32.00 $*****

prints ***** instead
of Y value because
Y has 5 digits, which
does not conform to
format list (as ex
plained below)

147

Line 20 prints this:

CBM CAT

leaves three spaces
before printing
“CBM” as defined in
format list

CHARACTER
Pound Sign (#)
Plus (+)
Minus (-)
Decimal Point (.)
Comma (,)
Dollar Sign ($)
Four Carets (♦♦♦♦)
Equal Sign (=)
Greater Than Sign (>)

NUMERIC
X
X
X
X
X
X
X

STRING
X

The pound sign (#) reserves room for a single character in the output
field. If the data item contains more characters than you have # in your
format field, the following occurs:

• For a numeric item, the entire field is filled with asterisks (*).
No numbers are printed.

For example:

10 PRINT USING “####”,X

For these values for X, this format displays:

A =12.34 12

A = 567.89 568

A = 123456 * * * *

For a STRING item, the string data is truncated at the bounds of the
field. Only as many characters are printed as there are pound signs
(#) in the format item. Truncation occurs on the right.

The plus (+) and minus (-) signs can be used in either the first or last
position of a format field but not both. The plus sign is printed if the
number is positive. The minus sign is printed if the number is negative.

148

If you use a minus sign and the number is positive, a blank is printed
in the character position indicated by the minus sign.

If you don’t use either a plus or minus sign in your format field for a
numeric data item, a minus sign is printed before the first digit or
dollar symbol if the number is negative and no sign is printed if the
number is positive. This means that you can print one character more
if the number is positive. If there are too many digits to fit into the
field specified by the # and + /- signs, then an overflow occurs
and the field is filled with asterisks (*).

A decimal point (.) symbol designates the position of the decimal point
in the number. You can only have one decimal point in any format field.
If you don’t specify a decimal point in your format field, the value is
rounded to the nearest integer and printed without any decimal places.

When you specify a decimal point, the number of digits preceding the
decimal point (including the minus sign, if the value is negative) must
not exceed the number of # before the decimal point. If there are too
many digits an overflow occurs and the field is filled with asterisks (*).

A comma (,) lets you place commas in numeric fields. The position of
the comma in the format list indicates where the comma appears in a
printed number. Only commas within a number are printed. Unused
commas to the left of the first digit appear as the filler character. At
least one # must precede the first comma in a field.

If you specify commas in a field and the number is negative, then a
minus sign is printed as the first character even if the character posi
tion is specified as a comma.

EXAMPLES:

FIELD
##.# +
##.#-
####
####

EXPRESSION RESULT
-.01 0.01-

1 1.0
-100.5 -101

-1000 ****

###.
#$##

10

COMMENT
Leading zero added.
Trailing zero added.
Rounded to no decimal places.
Overflow because four digits
and minus sign cannot fit in field.
Decimal point added.
Leading $ sign.

A dollar sign ($) symbol shows that a dollar sign will be printed in the
number. If you want the dollar sign to float (always be placed before

149

aiaiataiijeootisaoosioD
itt

the number), you must specify at least one # before the dollar sign. If
you specify a dollar sign without a leading #, the dollar sign is printed
in the position shown in the format field. If you specify commas and/or
a plus or minus sign in a format field with a dollar sign, your program
prints a comma or sign before the dollar sign.

The four up arrows or carets (TTTT) symbol is used to specify that the
number is to be printed in E + format. You must use # in addition to the

to specify the field width. The can appear either before or
after the # in the format field.

You must specify four carets (TTTT) when you want to print a number in
E - format (scientific notation). If you specify more than one but fewer
than four carets, you get a syntax error. If you specify more than four
carets only the first four are used. The fifth caret is interpreted as a no
text symbol.

An equal sign (=) is used to center a string in the field. You specify the
field width by the number of characters (# and =) in the format field. If
the string contains fewer characters than the field width, the string is
centered in the field. If the string contains more characters than can be
fit into the field, the right-most characters are truncated and the string
fills the entire field. A greater than sign (>) is used to right justify a
string in a field. You specify the field width by the number of characters
(# and =) in the format field. If the string contains fewer characters
than the field width, the string is right justified in the field. If the string
contains more characters than can be fit into the field, the right-most
characters are truncated and the string fills the entire field.

PUDEF PUDEF “1 through 4 characters"

PUDEF lets you redefine up to 4 symbols in the PRINT USING state
ment. You can change blanks, commas, decimals points, and dollar
signs into some other character by placing the new character in the
correct position in the PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new
character here when you want another character to appear in place
of blanks.

Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point.

Position 4 is the dollar sign.

150

EXAMPLES:

10 PUDEF

20PUDEF“ @”

30 PUDEF “

40 PUDEF “

PRINTS * in the place
of blanks.

PRINTS @ in place of
commas.

PRINTS decimal
points in place of
commas, and com
mas in place of
decimal points.

PRINTS English
pound sign in place
of $, decimal points
in place of commas,
and commas in place
of decimal points.
Other signs are the
default values.

READ READ variable list

REM

This statement is used to get information from DATA statements into
variables, where the data can be used. The READ statement variable
list may contain both strings and numbers. Care must be taken to avoid
reading strings where the READ statement expects a number, which
produces an ERROR message.

EXAMPLE:

READ A$, G$, 45

u

REM message
The REMark is just a note to whoever is reading a LIST of the program.
It may explain a section of the program, give information about the
author, etc. REM statements in no way affect the operation of the
program, except to add to its length (and therefore slow it down).
The word REM may be followed by any text, although use of graphic
characters gives strange results.

151

<ccrcccccc(cc((cccccctccccrc

EXAMPLE:

10 NEXT X: REM THIS LINE IS UNNECESSARY

RESTORE RESTORE
When executed in a program, the pointer to the item in a DATA statement
which is to be read next is reset to the first item in the list. This gives you
the ability to re-READ the information. If a [line #] follows the RESTORE
statement, the pointer is set to that line. Otherwise the pointer is reset to
the first DATA statement in the program.

EXAMPLE:

RESTORE 200

RESUME RESUME t//ne # /next]
Used to return to execution after TRAPping an error. With no argu
ments, RESUME attempts to re-execute the line in which the error
occurred. RESUME NEXT resumes execution at the next statement
following the statement containing the error; RESUME line # will
GOTO the specific line and begin execution there.

RETURN RETURN
This statement is always used with the GOSUB statement. When the
program encounters a RETURN statement, it goes to the statement
immediately following the last GOSUB command executed. If no
GOSUB was previously issued, then a RETURN WITHOUT GOSUB
ERROR message is delivered, and program execution is stopped.

SCALE SCALE < 7/0>

The scaling of the bit maps in multicolor and high resolution modes can
be changed with the SCALE command. Entering:

SCALE 1

turns scaling on. Coordinates may then be scaled from 0 to 1023 in
both X and Y rather than the normal scale values, which are:

152

multicolor mode X = Oto 159 Y = Oto 199

high resolution mode 0 to 319
Scaling can be turned off by entering ‘SCALE O’.

Oto 199

SCNCLR SCNCLR
Clears the current screen, whether graphics, text, or both
(split screen).

SOUND SOUND voice #, frequency control, duration

This statement produces a SOUND using one of three voices with a
frequency control in the range 0 - 1023 for a duration of 0 - 65535
60ths of a second.

V Voice

1 Voice 1 (tone)
2 Voice 2 (tone)
3 Voice 2 (white noise)

If a SOUND for voice N is requested, and the previous SOUND for the
same N is still playing, BASIC waits for the previous SOUND to com
plete. SOUND with a duration of 0 is a special case. It causes BASIC
to turn off the current SOUND for that voice immediately, regardless
of the time remaining on the previous SOUND. See the MUSIC NOTE
TABLE (SECTION 11) for the frequency control values that correspond
to real notes.

EXAMPLE:

SOUND 2, 800, 360

Plays a note using
voice 2 with fre
quency set at 800
for one minute

SSHAPE/GSHAPE SSHAPE and GSHAPE are used to save and restore rectangular areas
of multicolor or high resolution screens using BASIC string variables.
The command to save an area is:

SSHAPE string variable, a1 ,b1 [,a2,b2]

string variable String name to save data in

153

oatiaiiiotiaiaoiiiiatiisiiit

a1, b1 Corner coordinate (scaled)
a2,b2 Corner coordinate opposite (a1,b 1)

(default is the PC)

Because BASIC limits string lengths to 255 characters, the size of the
area you may save is limited. The string size required can be calcu
lated using one of the following (unsealed) formulas:

L(mcm) = INT ((ABS(a1 -a2) + 1) 14 + .99) * (ABS(b1 - b2) + 1) + 4
L(h-r) = I NT ((ABS(a1 -a2) + 1) / 8 + .99) * (ABS(b1 - b2) + 1) + 4
(mcm) refers to multi-color mode; (h-r) is high resolution.

The shape is saved row by row. The last four bytes of the string contain
the column and row lengths less one (i.e.: ABS (a1 -a2)) in low/high
byte format (if scaled divide the lengths by 3.2 (X) and 5.12 (Y)).

The command to display a saved shape on any area of the screen:

GSHAPE string [, [a.b] [.mode]]

string Contains shape to be drawn
a,b Top left coordinate telling where

to draw the shape (scaled -
the default is the PC)

mode Replacement mode:
0: place shape as is (default)
1: place field inverted shape
2: OR shape with area
3: AND shape with area
4: XOR shape with area

EXAMPLES:

SSHAPE “SHIP”,0,0 Saves shape on screen area from the
upper left corner to the cursor under the
name “SHIP”

GSHAPE “SHIP”„,1 Displays inverted “SHIP” shape with the
top left corner positioned where the cursor
is located

154

STOP ST0P
This statement halts the program. A message, BREAK IN LINE #,
where the # is the line number containing the STOR The program
can be re-started at the statement following STOP if you use the
CONT command. The STOP statement is usually used while de
bugging a program.

(|Y<J SYS address

The word SYS is followed by a decimal number or numeric variable
in the range 0 to 65535. The program begins executing the machine
language program starting at that memory location. This is similar
to the USR function, but does not pass a parameter. See the Plus/4
Programmer’s Reference Guide for information about machine
language programs.

TRAP TRAP[//ne#]

When turned on, TRAP intercepts all error conditions (including the
STOP KEY) except “UNDEF’D STATEMENT ERROR”. In the event of
any execution error, the error flag is set, and execution is transferred
to the line number named in the TRAP statement. The line number in
which the error occurred can be found by using the system variable
EL. The specific error condition is contained in system variable ER.
The string function ERR$(ER) gives the error message correspond
ing to any error condition ER.

NOTE: An error in a TRAP routine cannot be trapped.
The RESUME statement can be used to resume execution.
TRAP with no line# argument turns off error TRAPping.

IRON TRON
TRON is used in program debugging. This statement begins trace
mode. When you are in trace mode, as each statement executes, the
line number of that statement is printed.

155

eM
H

M
H

tteteM
M

tteitM
M

i

TROFF

VOL

WAIT

TROFF

This statement turns trace mode off.

VOL volume level

Sets the current VOLume level for SOUND commands. VOLume
may be set from 0 to 8, where 8 is maximum volume, and 0 is off.
VOL affects both voices.

WAIT address, value 1 [, value 2]

The WAIT statement is used to halt the program until the contents of a
location in memory changes in a specific way. The address must be in
the range from 0 to 65535. Value 1 and value 2 must be in the range
from Oto 255.
The content of the memory location is first exclusive-ORed with value 2
(if present), and then logically ANDed with value 1. If the result is zero,
the program checks the memory location again. When the result is not
zero, the program continues with the next statement.

156

MORE ON
GRAPHIC

STATEMENTS

There are a few concepts that apply to all of the bit map graphics
statements. First is the concept of the Pixel Cursor (PC). The PC is
similar to the cjjrsor in text mode; it is the position where the next dot
is to be drawn. Unlike the text cursor, the PC is invisible. All drawing
commands use the PC. In addition, the locate command allows you
to reposition the PC without drawing anything.

Wherever you would use X,Y coordinates in a drawing command,
you can use RELATIVE coordinates instead. Relative coordinates are
based on the current value of the PC. To use relative coordinates, just
place a + or - in front of your coordinates. A plus sign before the X
value moves the PC to the right. A minus sign before the X value moves
the PC to the left. Similarly, a minus sign before the Y coordinate moves
the PC up, while a plus sign moves the PC down. For example:

LOCATE +100,-25

DRAW1, +10, + 10T0100,100

moves the PC right
100 pixels and up 25.

draws a line 10 pixels
right and 10 pixels
below the current
value of the PC to the
absolute point 100,100.

You can also specify a distance and an angle relative to the current
PC by separating the two parameters by a semicolon.

For example:

LOCATE 50;45

moves the PC from
its current location
by a distance of 50
dots at an angle of
45 degrees.

157

IIIIM
M

IIIIIIIillllllK
II

FUNCTIONS

Numeric
Functions

Numeric functions are classified as such because they return num
bers. The functions they perform range from calculating mathematical
functions to specifying a screen location. Numeric functions follow
the form:

FUNCTION (argument)
where the argument can be a numerical value, variable, or string.

ABS(X) (absolute value)
The absolute value function returns the positive value of the
argument X.

ASC(X$)
This function returns the ASCII code (number) of the first character
of X$.

ATN(X) (arctangent)
Returns the angle whose tangent is X, measured in radians.

COS(X) (cosine)
Returns the value of the cosine of X, where X is an angle measured
in radians.

DEC (hexadecimal-string)
Returns decimal value of hexadecimal-string (0<hexadecimal-
string<FFFF)

EXAMPLE:

N = DEC(“F4”)

EXP(X)

Returns the value of the mathematical constant e (2.71828183) raised
to the power of X.

FNxx(x)
Returns the value of the user-defined function xx created in a DEF
FNxx statement.

INSTR (string 1, string 2 [starting-position])
Returns position of string 2 in string 1 at or after the [starting-position].
The starting-position defaults to the beginning of string 2. If no match is
found, a value of 0 is returned.

158

EXAMPLE:

PRINT INSTR(“THE CAT IN THE HAT”, “CAT”)

the result is 5, because CAT starts at the fifth character in string 1

INT(X) (integer)
Returns the integer portion of X, with all decimal places to the right of
the decimal point removed. The result is always less-than or equal to X.
Thus, any negative numbers with decimal places become the integer
less-than their current value (e.g. INT(-4.5)=-5).

If the INT function is to be used for rounding up or down, the form is
INT(X +/- .5).

EXAMPLE:

X=INT(X*100 + .5)/100

Rounds to the next highest penny.

JOY (n)

When n =1 Position of joystick #1
n = 2 Position of joystick # 2

Any value of 128 or more means the fire button is also depressed. The
direction is indicated as follows:

fire = 128 +

LEFT 7

UP
1

8
0

6
5

DOWN

2
3 RIGHT

4

EXAMPLE:

JOY(2)=135

joystick #2 fires to the left

LOG(X) (logarithm)
This returns the natural log of X. The natural log is log to the base e
(see EXP(X)). To convert to log base 10, divide by LOG(10).

159

ttiitttttittitit•t(r c rr t c•r•

PEEK(X)
This function gives the contents of memory location X, where X is
located in the range of 0 to 65535, returning a result from 0 to 255.
This is often used in conjunction with the POKE statement.

RCLR(N)
Returns current color assigned to source N (0 < N < 4)
(0= background, 1 = foreground, 2= multicolor 1,3 = multicolor
2, 4 = border).

RDOT(N)
Returns information about the current position of the pixel cursor (PC)
at XPOS/YPOS.

N - OforXPOS
1 for YPOS
2 color source

RGR(X)
Returns current graphic mode (X is a dummy argument).

RLUM(N)
Returns current luminance level assigned to source N

RND(X) (random number)
This function returns a random number between 0 and 1. This is useful
in games, to simulate dice rolls and other elements of chance, and is
also used in some statistical applications. The first random number
should be generated by the formula RND(-TI), to start things off dif
ferently every time. After this, the number in X should be a 1, or any
positive number. (X represents the seed, or what the RaNDom number
is based on.) If X is zero, RND is re-seeded from the hardware clock
every time RND is used. A negative value for X seeds the random
number generator using X and gives a random number sequence. The
use of the same negative number for X as a seed results in the same
sequence of random numbers. A positive value gives random numbers
based on the previous seed.

To simulate the rolling of a die, use the formula INT(RND(1)*6+1). First
the random number from 0-1 is multiplied by 6, which expands the
range to 0-6 (actually, greater than zero and less then six). Then 1 is
added, making the range 1 to under 7. The INT function chops off all
the decimal places, leaving the result as a digit from 1 to 6.

To simulate 2 dice, add two of the numbers obtained by the above for
mula together.

160

EXAMPLE:

100 X=INT(RND (1) * 6) 4- INT(RND(1) * 6)+2
100 X=INT(RND(1)* 1000) 4-1
100 X=INT(RND(1)* 150) 4-100

Simulates 2 dice.
Number from 1-1000.
Number from 100-249.

SGN(X) (sign)
This function returns the sign, as in positive, negative, or zero, of X. The
result is + 1 if positive, 0 if zero, and - 1 if negative.

SIN(X) (sine)
This is the trigonometric sine function. The result is the sine of X, where
X is an angle in radians.

SQR(X) (square root)
This function returns the square root of X, where X is a positive
number or 0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)
This gives the tangent of X, where X is an angle in radians.

USR(X)
When this function is used, the program jumps to a machine language
program whose starting point is contained in memory locations 1281
and 1282. The parameter X is passed to the machine language pro
gram in the floating point accumulator. Another number is passed back
to the BASIC program through the calling variable. In other words, this
allows you to exchange a variable between machine code and BASIC.
See the Plus/4 PROGRAMMER’S REFERENCE GUIDE for more details
on this, and on machine language programming.

VAL(X$)
This function converts the string X$ into a number, and is essentially
the inverse operation from STR$. The string is examined from the left
most character to the right, for as many characters as are in recog
nizable number format. If the Plus/4 finds illegal characters, only the
portion of the string up to that point is converted.

EXAMPLE:

10 X=VAL(“123.456”)

10 X=VAL(“3E03”)

10 X=VAL(“12A13B”)

161

••ccttr*terete*etc(•<£((?•(•

10 X=VAL(“RIUO17*”) x=o
10 X=VAL(“ —1.23.23.23”) X=-1.23

String
Functions

String functions differ from numeric functions in that they return
characters, graphics or numbers from a string (defined by quotation
marks) instead of a number.

CHR$(X)
This function returns a string character whose ASCII code is X.

ERR$(N)
Returns string describing error condition N (see TRAP)

HEX$(N)
Returns a 4 character string containing the hexadecimal representa
tion of value N (0 < N < 65535)

LEFT$(X$,X)
This returns a string containing the leftmost X characters of X$.

LEN(X$)
Returns the number of characters (including spaces and other
symbols) in the string X$.

MID$(X$,S,X)
This returns a string containing X characters, starting from the Sth
character in X$. MID$ can also be used on the left side of assignment
statement as a pseudo-variable as well as a function. MID$ (string
variable, starting position, length) = source string.

This function reassigns values of positions (starting position) through
(starting position + length) of source string to the characters of string
variable in corresponding locations. Length defaults to the length of
string variables, and an error results if (starting position + length) is
greater than the length of the source string.

EXAMPLE:

10 A$ = “THE DOG IN THE HAT”:
20 PRINT A$
30 MID$(A$,5,3) = “CAT”
40 PRINT A$

162

RIGHT$(X$,X)
This returns the right-most X characters in X$.

STR$(X)
This returns a string which is identical to the PRINTed version of X$.

EXAMPLE:

A$=STR$(X)

Other FRE(X)
Functions This function returns the number of unused bytes available in memory.

X is a dummy argument.

POS(X)
This function returns the number of the column (0-79) where the next
PRINT statement begins on the screen. X is a dummy argument.

SPC(X)
This is used in the PRINT statement to skip over X spaces. X can have
a value from 0-255.

TAB(X)
This is used in the PRINT statement. The next item to be printed is in
column number X. X can have a value from 0 to 255.

77 (PI)
The 77 symbol, when used in an equation, has the value of 3.14159265.

163

• t e t e c • f e • r • c r • e r • • e (c c • c c r •

VARIABLES
& OPERATORS

Variables

The Plus/4 uses three types of variables in BASIC. These are:
normal numeric, integer numeric, and string (alphanumeric) variables.

Normal NUMERIC VARIABLES, also called floating point variables,
can have any value from 38 to +38, with up to nine digits of accuracy.
When a number becomes larger than nine digits can show, as in N -1°
or N10, the computer displays it in scientific notation form, with the
number normalized to 1 digit and eight decimal places, followed by the
letter E and the power of ten by which the number is multiplied. For
example, the number 12345678901 is displayed as 1.234356789E+10.

INTEGER VARIABLES can be used when the number is from +32767
to -32768, and with no fractional portion. An integer variable is a
number like 5,10, or -100. Integers take up less space than floating
point variables, particularly when used in an array.

STRING VARIABLES are those used for character data, which may
contain numbers, letters, and any other character that the Plus/4 can
make. An example of a string variable is “Plus/4”.

Variable
Names

Variable names may consist of a single letter, a letter folowed by a
number, or two letters. Variable names may be longer than 2 charac-
ters, but only the first two are significant.
An integer variable is specified by using the percent (%) sign after
the variable name. String variables have the dollar sign ($) after
their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%
String Variable Names: A$, A5$, BZ$

ARRAYS are lists of variables with the same name, using an extra
number (or numbers) to specify an element of the array. Arrays are
defined using the DIM statement, and may be floating point, integer,
or string variables arrays. The array variable name is followed by a
set of parentheses () enclosing the number of the variable in the list.

EXAMPLES:

A(7),BZ%(11),A$(87)

Arrays may have more than one dimension. A two dimensional array

164

may be viewed as having rows and columns, with the first number
identifying the row and the second number in the parentheses identi
fying the column (as if specifying a certain grid on a map).

EXAMPLES:

A(7,2),BZ%(2,3,4),Z$(3,2)R6S6rV6d There are seven variable names which are reserved for use by the Variable plus/4> and may not be used for another purpose. These are the vari- KlompQ aloles DS, DS$, ER, EL, ST,TI, and Tl$. You also can’t use KEYWORDS NdlllCb such as T0 and |F) or any names that contajn KEYWORDS, such as
SRUN, RNEW, or XLOAD as variable names.

ST is a status variable for input and output (except normal screen/
keyboard operations). The value of ST depends on the results of the
last input/output operation. A more detailed explanation of ST is in the
Plus/4 Programmer’s Reference Guide, but in general, if the value of
ST is 0 the operation was sucessful.

Tl and Tl$ are variables that relate to the real-time clock built into the
Plus/4. The system clock is updated every 1 /60th of a second. It starts
at 0 when the Plus/4 is turned on, and is reset only by changing the
value of Tl$. The variable Tl gives you the current value of the clock in
1/60ths of a seconds.

Tl$ is a string that reads the value of the real-time clock as a 24 hour
clock. The first two characters of Tl$ contain the hour, the 3rd and
4th characters are the minutes, and the 5th and 6th characters are
the seconds. This variable can be set to any value (so long as all
characters are numbers), and will be automatically updated as a
24 hour clock.

EXAMPLE:

Tl$ = “101530” sets the clock to 10:15 and 30 seconds (AM)

The value of the clock is lost when the Plus/4 is turned off. It starts at
zero when the Plus/4 is turned on, and is reset to zero when the value
of the clock exceeds 235959 (23 hours, 59 minutes and 59 seconds).

The variable DS reads the disk drive command channel, and returns
the current status of the drive. To get this information in words, PRINT
DS$. These status variables are used after a disk operation, like a
DLOAD or DSAVE, to find out why the red error light on the disk drive
is blinking.

165

• c
c c • t

. c o ct • • c o « r c
c te c e • c

c c • •

ER, EL, and ERRS are variables used in error trapping routines. They
are usually only useful within a program. ER returns the last error en
countered since the program was RUN. EL is the line where the error
occurred. ERRS is a function which allows your program to print one
of the BASIC error messages. PRINT ERR$(ER) prints out the proper
error message.

BASIC The ARITHMETIC operators include the following signs:
OPERATORS addition

— subtraction* multiplication
/ division
T raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in
which operations always occur. If several operators are used together,
the computer assigns priorities as follows: First, exponentiation, then
multiplication and division, and last, addition and subtraction. If two
operations have the same priority, then calculations are performed in
order from left to right. If you want these operations to occur in a dif
ferent order, Plus/4 BASIC allows you to give a calculation a higher
priority by placing parentheses around it. Operations enclosed in
parentheses will be calculated before any other operation. You have
to make sure that your equations have the same number of left par
entheses as right parentheses, or you will get a SYNTAX ERROR
message when your program is run.

Finally, there are three LOGICAL operators, with lower priority than
both arithmetic and relational operators:

There are also operators for equalities and inequalities, called
RELATIONAL operators. Arithmetic operators always take priority
over relational operators.

is equal to
is less than
is greater than

<= or =< is less than or equal to
>= or => is greater than or equal to
<> or >< is not equal to

AND
OR
NOT

These are used most often to join multiple formulas in IF... THEN
statements. When they are used with arithmetic operators, they are
evaluated last (i.e., after + and -).

ItlB
B

C
ttttC

IC
C

tlK
tttC

C f C C (

< 168

requires both A=B & C=D to be true,
allows either A=B or C=D to be true,
displays a value of 0
displays a value of -1

EXAMPLES:

IF A=B AND C=D THEN 100
IF A=B OR C=D THEN 100
A=5:B=4:PRINT A=B
A=5:B=4:PRINT A>B
PRINT 123 AND 15.PRINT 5 OR 7 displays 11 and 7

SECTION 2

Basic 3.5
Abbreviations

KEYWORD ABBREVIATION TYPE
ABS a SHIFT B function—numeric
ASC a SHIFT S function—numeric
ATN a SHIFT T function—numeric
AUTO a SHIFT U command
BACKUP b SHIFT A command
BOX b SHIFT 0 statement
CHAR Ch SHIFT A statement
CHR$ C SHIFT H function—string
CIRCLE C SHIFT I statement
CLOSE cl SHIFT 0 statement
CLR c SHIFT L statement
CMD C SHIFT M statement
COLLECT col SHIFT L command
COLOR co SHIFT L statement
CONT C SHIFT 0 command
COPY CO SHIFT P command
COS none function—numeric
DATA d SHIFT A statement
DEC none function—numeric
DEFFN d SHIFT E statement
DELETE de SHIFT L command
DIM d SHIFT I statement
DIRECTORY di SHIFT R command
DLOAD d SHIFT L command
DO none statement
DRAW d SHIFT R statement
DSAVE d SHIFT S command
END e SHIFT N statement
ERR$ e SHIFT R function—string
EXP e f SHIFT X function—numeric
FOR f SHIFT 0 statement
FRE f SHIFT R function—numeric
GET g SHIFT E statement
GETKEY getk SHIFT E statement
GET# none statement
GOSUB go SHIFT S statement
GOTO g SHIFT' 0 statement
GRAPHIC g SHIFT R statement

169

c ccecsccccctcectrcccc cc< eccr 170

KEYWORD ABBREVIATION TYPE___________________________

GSHAPE g SHIFT S statement
HEADER he SHIFT A command
HEX$ h SHIFT E function—string
IF... GOTO none statement
IF...THEN...ELSE none statement
INPUT none statement
INPUT# i SHIFT N statement
INSTR in SHIFT S function—numeric
INT none function—numeric
JOY i SHIFT 0 function—numeric
KEY k SHIFT E command
LEFTS le I SHIFT F function—string
LEN none function—numeric
LET 1 I SHIFT |E statement
LIST 1 SHIFT command
LOAD 11 SHIFT IO command
LOCATE Io I SHIFT IC statement
LOG none function—numeric
LOOP Io I SHIFT : 0 statement
MID$ m 1 SHIFT |l function—string
MONITOR m (SHIFT IO statement
NEW none command
NEXT n 1 SHIFT IE statement
ON...GOSUB on.. ■go SHIFT |S statement
ON...GOTO on ...g SHIFT |O statement
OPEN ol SHIFT P statement
PAINT Pl SHIFT |A statement
PEEK P SHIFT IE function—numeric
POKE P SHIFT 10 statement
POS none function—numeric
PRINT ? statement
PRINT# P SHIFT |R statement
PRINT USING ?us SHIFT Bl statement
PUDEF p SHIFT lu statement
RCLR r SHIFT Ic function—numeric
RDOT r SHIFT D function—numeric
READ r SHIFT |E statement
REM___________ none statement________________

KEYWORD ABBREVIATION TYPE
RENAME re -; SHIFT N command
RENUMBER ren SHIFT U command
RESTORE re shift S statement
RESUME res SHIFT U statement
RETURN re SHIFT T statement
RGR r SHIFT G function—numeric
RIGHTS r SHIFT I function—string
RLUM r SHIFT L function—numeric
RND r SHIFT N function—numeric
RUN r SHIFT U command
SAVE S SHIFT A command
SCALE sc SHIFT A statement
SCNCLR S SHIFT C statement
SCRATCH SC SHIFT R command
SGN S SHIFT G function—numeric
SIN S SHIFT I function—numeric
SOUND S SHIFT 0 statement
SPC(S SHIFT P function—special
SQR S SHIFT Q function—numeric
SSHAPE S f SHIFT S statement
STatus none reserved—numeric variable
STOP S SHIFT T statement
STR$ St SHIFT R function—string
SYS S SHIFT Y statement
TAB(t SHIFT A function—special
TAN none function—numeric
Tl none reserved—numeric variable
Tl$ none reserved—string variable
TRAP t SHIFT R statement
TROFF tro SHIFT F statement
TRON tr SHIFT 0 statement
UNTIL u SHIFT N statement
USR U SHIFT S function—special
VAL none function—numeric
VERIFY V SHIFT E command
VOL V SHIFT 0 statement
WAIT w SHIFT A statement
WHILE w .SHIFT H statement

171

m
siisiioM

oi JiiioocecD
ioco

SECTION 3

Conversion
Programs

Converting Standard BASIC Programs To Commodore BASIC 3.5
If you have programs written in a BASIC other than Commodore
BASIC, some minor adjustments may be necessary before
running them on the Plus/4. Here are some hints to make the
conversions easier.

String Dimensions
Delete all statements that are used to declare the length of strings.
A statement such as DIM A$(l,J), which DIMensions a string array
for J elements of length I, should be converted to the Commodore
BASIC statement DIM A$(J).
Some BASICS use a comma or ampersand for string concatenation
(linking). Each of these must be-changed to a + sign, which is the
Commodore BASIC 3.5 operator for string concatenation.

In Commodore BASIC, the MID$, RIGHTS, and LEFTS functions are
used to take substrings of strings. Forms such as A$(I) to access the
Ith character in AS, or A$(l,J) to take a substring of AS from position
I to J, must be changed as follows:

Other BASIC Commodore BASIC 3.5
A$(l) = X$ MID$(A$,I,J) = X$
A$(l, J) = X$ MID$(A$,I, J) = X$

Multiple Assignments
To set B and C equal to zero, some BASICS allow statements of the
form: 10 LET B = C =0

Commodore BASIC would interpret the second sign as a logical
operator and set B = -1 if C = 0. Instead, convert this statement to:
10 C = 0: B = 0

Multiple Statements
Some BASICS use a backslash (/) to separate multiple statements on a
line. With 3.5 BASIC, use a colon (:) to separate all statements.

Mat Functions
Programs using the MAT functions available on some BASICs must be
rewritten using FOR... NEXT loops to execute properly.

Reprogramming Function Keys
You can reprogram the function keys to match the function keys on the
Commodore 64 and VIC-20. (This also makes program conversions
from those machines easier).

To reprogram the keys, put the following line into your program:

10FORI=1 TO8:KEYI, CHR$(I+132): NEXT

Now whenever you type a function key, it sends a non-printing
character, from 133 to 140, like the Commodore 64 does. To check for
this in a program, you can use this method;

20 GETKEY A$: IF ASC(A$) = 133 THEN PRINT “FUNCTION KEY 1
HIT”: GOTO 20
30 IF ASC(A$) > 133 AND ASC(A$) < 141 THEN PRINT “SOME
OTHER FUNCTION KEY HIT”
40 GOTO 20

After your program is done, you have to redefine the keys again if you
want them to say directory, dload, etc. You can do this by hand, in a
program, or by resetting the Plus/4.

173

eiiiiittiiioieiosoootooeioD

SECTION 4

Error Messages

These error messages are printed by BASIC. You can also PRINT
the messages through the use of the ERR$() function. The error
number refers only to the number assigned to the error for use with
this function.

ERROR# ERROR NAME
1 TOO MANY FILES

2 FILE OPEN

3 FILE NOT OPEN

4 FILE NOT FOUND

5 DEVICE NOT PRESENT

6 NOT INPUT FILE

7 NOT OUTPUT FILE

8 MISSING FILE NAME

9 ILLEGAL DEVICE
NUMBER

10 NEXT WITHOUT FOR

11 SYNTAX

There is a limit of 10 files
OPEN at one time.
An attempt was made to open
a file using the number of an
already open file.
The file number specified in
an I/O statement must be
opened before use.
Either no file with that name
exists (disk) or an end-of-tape
marker was read (tape).
The required I/O device not
available.
An attempt made to GET or
INPUT data from a file that
was specified as output only.
An attempt made to send
data to a file that was speci
fied as input only.
An OPEN, LOAD, or SAVE to
the disk drive generally re
quires a file name.
An attempt made to use a
device improperly (SAVE to
the screen, etc.)
Either loops are nested in
correctly, or there is a variable
name in a NEXT statement
that doesn’t correspond with
one in a FOR.
A statement is unrecogniza
ble by BASIC. This could be

174

RETURN WITHOUT
GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF’D STATEMENT

BAD SUBSCRIPT

REDIM’D ARRAY

DIVISION BY ZERO
ILLEGAL DIRECT

because of missing or extra
parenthesis, misspelled
keyword, etc.
A RETURN statement en
countered when no GOSUB
statement was active.
A READ statement en
countered, without data
left unREAD.
A number used as the
argument of a function or
statement is outside the
allowable range.
The result of a compu
tation is larger than the
largest number allowed
(1.701411833E+38)
Either there is no more room
for program and program
variables, or there are too
many DO, FOR, or GOSUB
statements in effect.
A line number referenced
doesn’t exist in the program.
The program tried to refer
ence an element of an array
out of the range specified by
the DIM statement.
An array can only be DIMen-
sioned once. If an array is
referenced before that array
is DIM’d, an automatic DIM (to
10) is performed.
Division by zero is not allowed.
INPUT or GET statements are
only allowed within a program.

c
c 11 c t o t c e c c c c c c c c t c c etc test 176

22 TYPE MISMATCH This occurs when a number
is used in place of a string or
vice-versa.

23 STRING TOO LONG A string can contain up to 255
characters.

24 FILE DATA Bad data read from a tape file.

25 FORMULATOO
COMPLEX

Simplify the expression
(break into 2 parts or use
fewer parentheses).

26 CAN’T CONTINUE The CONT command does
not work if the program was
not RUN, there was an error,
or a line has been edited.

27 UNDEF’D FUNCTION A user defined function refer
enced that was never defined.

28 VERIFY The program on tape or disk
does not match the program
in memory.

29 LOAD There was a problem loading.
Try again.

30 BREAK The stop key was hit to halt
program execution.

31 CAN’T RESUME A RESUME statement en
countered without TRAP
statement in effect.

32 LOOP NOT FOUND The program has encoun
tered a DO statement and
cannot find the correspond
ing LOOP.

33 LOOP WITHOUT DO LOOP encountered without a
DO statement active.

34 DIRECT MODE ONLY This command is allowed
only in direct mode, not from
a program.

35 NO GRAPHICS AREA A command (DRAW, BOX,
etc.) to create graphics
encountered before the

36 BAD DISK

GRAPHIC command
was executed.
An attempt failed to HEADER
a diskette, because the quick
header method (no ID) was
attempted on an unformatted
diskette, or the diskette is bad.

m
aiiaaaaioitiot jceaicceuc

DESCRIPTION
OF

DOS
ERROR

MESSAGES

These error messages are returned through the DS and DS$
reserved variables.

NOTE: Error message numbers less than 20 should be ignored
with the exception of 01, which gives information about the num
ber of files scratched with the SCRATCH command.

20 READ ERROR
(block header not found)

21 READ ERROR
(no sync character)

22 READ ERROR
(data block not present)

23 READ ERROR
(checksum error
in data block)

24 READ ERROR
(byte decoding error)

The disk controller is unable to lo
cate the header of the requested
data block. Caused by an illegal
sector number, or the header has
been destroyed.

The disk controller is unable to
detect a sync mark on the desired
track. Caused by misalignment of
the read/writer head, no diskette
is present, or unformatted or im
properly seated diskette. Can
also indicate a hardware failure.

The disk controller has been re
quested to read or verify a data
block that was not properly writ
ten. This error message occurs
in conjunction with the BLOCK
commands and indicates an ille
gal track and/or sector request.

This error message indicates that
there is an error in one or more of
the data bytes. The data has been
read into the DOS memory, but
the checksum over the data is in
error. This message may also in
dicate grounding problems.

The data or header has been read
into the DOS memory, but a hard
ware error has been created due
to an invalid bit pattern in the data

178

179

byte. This message may also
indicate grounding problems.

25 WRITE ERROR
(write-verity error)

This message is generated if the
controller detects a mismatch
between the written data and the
data in the DOS memory.

26 WRITE PROTECT ON This message is generated when
the controller has been requested
to write a data block while the
write protect switch is depressed.
Typically, this is caused by using
a diskette with a write protect
tab over the notch.

27 READ ERROR
(checksum error
in header)

The controller has detected an
error in the header of the re
quested data block. The block
has not been read into the DOS
memory. This message may also
indicate grounding problems.

28 WRITE ERROR
(long data block)

The controller attempts to detect
the sync mark of the next header
after writing a data block. If the
sync mark does not appear within
a pre-determined time, the error
message is generated. The error
is caused by a bad diskette format
(the data extends into the next
block), or by hardware failure.

29 DISK ID MISMATCH This message is generated when
the controller has been requested
to access a diskette which has
not been initialized. The message
can also occur if a diskette has a
bad header.

30 SYNTAX ERROR
(general syntax)

The DOS cannot interpret the
command sent to the command
channel. Typically, this is caused

IIIIIO
M

liaM
aiH

IIO
IID

M
M

I

by an illegal number of file names,
or patterns are illegally used. For
example, two file names may
appear on the left side of the
COPY command.

31 SYNTAX ERROR
(invalid command)

The DOS does not recognize the
command. The command must
start in the first position.

32 SYNTAX ERROR
(invalid command)

The command sent is longer than
58 characters.

33 SYNTAX ERROR
(invalid file name)

Pattern matching is invalidly used
in the OPEN or SAVE command.

34 SYNTAX ERROR
(no file given)

The file name was left out of a
command or the DOS does not
recognize it as such. Typically,
a colon(:) has been left out of
the command.

39 SYNTAX ERROR
(invalid command)

This error may result if the com
mand sent to command channel
(secondary address 15) is unrec
ognized by the DOS.

50 RECORD NOT PRESENT Result of disk reading past the
last record through INPUT#, or
GET# commands. This message
will also occur after positioning to
a record beyond end of file in a
relative file. If the intent is to ex
pand the file by adding the new
record (with a PRINT# com
mand), the error message may be
ignored. INPUT or GET should not
be attempted after this error is de
tected without first repositioning.

51 OVERFLOW IN RECORD PRINT# statement exceeds
record boundary. Information is
truncated. Since the carriage re-

180

181

turn which is sent as a record ter
minator is counted in the record
size, this message will occur if the
total characters in the record (in
cluding the final carriage return)
exceeds the defined size.

i

52 FILE TOO LARGE Record position within a relative
file indicates that disk overflow
will result.

60 WRITE FILE OPEN This message is generated
when a write file that has not
been closed is being opened
for reading.

61 FILE NOTOPEN This message is generated when
a file is being accessed that has
not been opened in the DOS.
Sometimes, in this case, a mes
sage is not generated; the re
quest is simply ignored.

62 FILE NOT FOUND The requested file does not exist
on the indicated drive.

63 FILE EXISTS The file name of the file being
created already exists on the
diskette.

64 FILE TYPE MISMATCH The file type does not match the
file type in the directory entry for
the requested file.

65 NO BLOCK This message occurs in conjunc
tion with the B-A command. It
indicates that the block to be allo
cated has been previously allo
cated. The parameters indicate
the track and sector available
with the next highest number. If
the parameters are zero (0), then
all blocks higher in number are
in use._______________________

66 ILLEGAL TRACK
AND SECTOR

The DOS has attempted to ac
cess a track or block which does
not exist in the format being used.
This may indicate a problem read
ing the pointer to the next block.

67 ILLEGAL SYSTEM
TORS

This special error message
indicates an illegal system
track or sector.

70 NO CHANNEL
(available)

The requested channel is not
available, or all channels are in
use. A maximum of five sequential
files may be opened at one time to
the DOS. Direct access channels
may have six opened files.

71 DIRECTORY ERROR The BAM does not match the
internal count. There is a problem
in the BAM allocation or the BAM
has been overwritten in DOS
memory. To correct this problem
reinitialize the diskette to restore
the BAM in memory. Some active
files may be terminated by the
corrective action. NOTE: BAM =
Block Availability Map

72 DISK FULL Either the blocks on the diskette
are used or the directory is at its
entry limit. DISK FULL is sent
when two blocks are available
on the 1541 to allow the current
file to be closed.

73 DOS MISMATCH (73,
CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible
but not write compatible. Disks
may be interchangeably read with
either DOS, but a disk formatted
on one version cannot be written
upon with the other version be
cause the format is different. This
error is displayed whenever an

182

attempt is made to write upon a
disk which has been formatted in
a non-compatible format. (A utility
routine is available to assist in
converting from one format to
another.) This message may also
appear after power up.

74 DRIVE NOT READY An attempt has been made to
access the Floppy Disk Drive
without any diskette present.

183

aaaaaaaaaaiaaaaaaaoaaaaaa)

it c c • ft c c c tt 111 • • t • c e c • • 11 er t

SECTION 5

Tedmon
Commands

Introduction
TEDMON is a built-in machine language program which lets you easily
write machine language programs. TEDMON includes a machine lan
guage monitor, a mini assembler, and a disassembler.
Machine language programs written using TEDMON can run by them
selves, or be used as very fast ‘subroutines’ for BASIC programs since
TEDMON has the ability to coexist peacefully with BASIC.

Location $7F8 controls whether TEDMON looks at ROM or RAM above
$8000. If this location is set to 0, TEDMON displays BASIC and the
KERNAL when commanded to do a disassembly or memory dump

A ASSEMBLE Assemble a line of 6502 code

c COMPARE Compare two sections of memory and report
differences.

D DISASSEMBLE Disassemble a line of 6502 code.

F FILL Fill memory with the specified byte.

G GO Start execution at the specified address.

H HUNT Hunt through memory for all occurrences of
certain bytes.

L LOAD Load a file from tape or disk.

M MEMORY Display the hexadecimal values of Memory
locations.

R REGISTERS Display the 6502 Registers.

S SAVE Save to tape or disk.
"I” TRANSFER Transfer code from one section of memory

to another.

V VERIFY Compare memory with tape or disk.

X EXIT Exit TEDMON.

• (period) Assembles a line of 6502 code

(greater than) Modifies memory

J (semi-colon) Modifies 6502 Register displays

184

above $8000. If this location is set to $80 TEDMON displays the RAM
under BASIC and the KERNAL. This is often convenient for machine
language program development. Note that location $7F8 does not
affect the GO command. The GO command starts execution in the
current memory map (ROM on or RAM on) regardless of the setting
of location $7F8.

Using Enter TEDMON by typing:

Tedmon monitor

TEDMON responds by displaying the 6502 registers and flashing the
cursor. The cursor is your prompt that lets you know that TEDMON is
waiting for your commands.

Command command: a
Descriptions PURPOSE: Enter a line of assembly code.

SYNTAX: A <address> <opcode mnemonio <operand>

<address> A hexadecimal number indicating the location in memory
to place the opcode.

<opcode mnemonio A standard MOS technology assembly lan
guage mnemonic, e.g. LDA, STX, ROR, etc.

<operand> The operand, when required, can be of any of the legal
addressing modes. (For zero-page modes a 2 digit hex number is re
quired whose value is less than $100. For non-zero page addresses
4 digit hex numbers are required.)

A RETURN is used to indicate the end of the assembly line. If there
are any errors on the line, a question mark is displayed to indicate an
error, and the cursor moves to the next line. The screen editor can be
used to correct any errors on the line.

After a line of code is successfully assembled, the assembler prints a
prompt containing the next legal memory location for an instruction, so
A and the line number do not have to be typed more than once when
typing assembly language programs into the Plus/4.

IIJ
Ilt

lil
Ji

nt
D

III
III

M
JJ

ll
EXAMPLE:

.A 1200 LDX #$00

.A 1202

NOTE: A period (.) is equal to the ASSEMBLE command.

EXAMPLE:

. 2000 LDA #$23

COMMAND: C
PURPOSE: Compare two areas of memory

SYNTAX: C <address 1 > <address 2> <address 3>

<Address 7 > is a hexadecimal number indicating the start address of
the area of memory to compare against.

<Address 2> is a hexadecimal number indicating the end address of
the area of memory to compare against.

<Address 3> is a hexadecimal number indicating the start address of
the other area of memory to compare with.

If the two areas of memory are the same, then TEDMON prints a
RETURN, indicating that the second area of memory is the same
as the first. The addresses of any bytes in the two areas which are
different are printed out on the screen.

COMMAND: D
PURPOSE: Disassemble machine code into assembly language
mnemonics and operands.

SYNTAX: D [<address>] [<address 2>]

<address> A hexadecimal number setting the address to start
the disassembly.

caddress 2> An optional hexadecimal ending address of code
to be disassembled.

The format of the disassembly is only slightly different than the input
format of an assembly. The difference is that the first character of a

186

disassembly is a period rather than an A (for readability), and the
Hexadecimal of the code is listed as well.
A disassembly listing can be modified using the screen editor. Make
any changes to the mnemonic or operand on the screen, then hit a
carriage return. This enters the line and call the assembler for further
modifications.

A disassembly can be paged. Typing a D causes the next page of dis
assembly to scroll onto the screen.

LDA #$00
???
BNE $3030

EXAMPLE: D 3000 3004
3000 A900
3002 FF
3003 DO 2B

COMMAND: F (FILL)

PURPOSE: Fill a range of locations with a specified byte.

SYNTAX: F <ad dress 1 > <address 2> <byte>

<address 1 > The first location to fill with the <byte>

<address 2> The last location to fill with the <byte>

<byte value> A 1 or 2 digit hexadecimal number to be written

This command is useful for initializing data structures or any other
RAM area.

EXAMPLE: F 0400 0518 EA

Fills memory locations from $0400 to $0518 with $EA (a NOP
instruction.)

COMMAND: G
PURPOSE: Begin execution of a program at a specified address.

SYNTAX: G [<address>]

<address> An optional argument specifying the new value of the
program counter and address where execution is to start. When
<address> is left out, execution begins at the current PC. (The
current PC can be viewed using the R command.)

The GO command restores all registers (displayable by the R com
mand) and begins execution at the specified starting address. Caution

187

n

«•

49
«•

is recommended in using the GO command. To return to TEDMON
after executing a machine language program, use the BRK instruction.

EXAMPLE: G 140C

Execution begins at location $140C.

COMMAND: H (HUNT)

PURPOSE: Hunt through memory within a specified range for all
occurrences of a set of bytes.

SYNTAX: H <address 1 > <address 2> <data>

<address 1 > beginning address of hunt procedure

<address 2> ending address of hunt procedure

<data> data set to search for data may be hexadecimal or an
ASCII string. An ASCII is specified by preceding the first character with
a single quote, eg, ‘STRING. Data may be single or multiple element
argument. When multiple and in hexadecimal each number must be
separated by a space.

EXAMPLE: H

COMMAND: L (LOAD)

PURPOSE: Load a file from cassette or disk.

SYNTAX: L <“filename”>, <device>

<filename> is any legal Plus/4 filename inside quotes.

<device> is a hexadecimal number indicating the device to load from.

1 is cassette

188

8 is disk (or 9, A, etc.)

The Load command causes a file to be loaded into memory. The start
ing address is contained in the first two bytes of the file (a program file).
In other words, the LOAD command always loads a file into the same
place it was saved from. This is very important in machine language
work, since few programs are completely relocatable. The file is
loaded into memory until the end of file (EOF) is found.

EXAMPLE: L “SCREEN”, 1

reads a file from
cassette.

L “TANK”, 8

reads a file from disk.

COMMAND: M (MEMORY DISPLAY)

PURPOSE: To display memory as a hexadecimal and ASCII dump
within the specified address range.

SYNTAX: M [<address 1 >] [<address>]

[<address 1 >] First address of memory dump. Optional. If omitted,
one page is displayed. The first byte is the last address specified.

[<address 2>] Last address of memory dump. Optional. If omitted,
one page is displayed. The first byte is the data of [<address 1 >].

Memory is displayed in the following format:

> A048 41 E7 00 AA AA 00 98 56 45 : A!. * .. VE

Memory content may be edited using the screen editor. Move the cur
sor to the data to be modified and type the desired correction and hit
return. If there is a bad RAM location or an attempt to modify ROM has
occurred, an error flag (?) is displayed.

An ASCII dump of the data is displayed in REVERSE (to contrast the
dump with other data displayed on the screen) to the right of the hex
data. When a character is not printable, it is displayed as a reversed
period (.).

189

in
iji

im
m

tii
i li

m
n

As with the Disassembly command, you can page down by typing M
and RETURN.

EXAMPLE

M 1C00
>1COO 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1CO8 41 E7 00 AA AA 00 98 56 45 :AL*..VE
>1C1O 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C18 41 E7 00 AA AA 00 98 56 45 :AL*..VE
>1C2O 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C28 41 E7 00 AA AA 00 98 56 45 :AL*..VE
>1C3O 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C38 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C4O 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C48 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C5O 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
>1C58 41 E7 00 AA AA 00 98 56 45 :A!.*..VE

COMMAND: > (GREATER THAN sign)

PURPOSE: Can be used to set 1 to 8 memory locations at a time.

SYNTAX: > address data byte 1 <data byte 2. ..8>

address: First memory address to set
data byte 1: Data to be put at address
<data byte 2 to data byte 8>: Data to be placed in the successive
memory locations following the first address. Optional

EXAMPLE

>2000 08 places an 08 at
location 2000

>3000 23 45 65 places a 23 at
location 3000, a
45 at 3001, and
a 65 at 3002

190

COMMAND: R (REGISTER DISPLAY)

PURPOSE: Show important 6502 registers. The program status regis
ter, the program counter, the accumulator, the X and Y index registers
and the stack pointer are displayed.

SYNTAX: R

EXAMPLE: R
PC SR AC XR YR SP

; 1002 01 02 03 04 F6

NOTE:; (semi-colon) can be used to modify register displays in
the same fashion as > can be used to modify memory registers.

COMMAND: S (SAVE) ;

PURPOSE: Save the contents of memory onto tape or disk.

SYNTAX: S <“filename'’>,<device>,<address 1 >,<address 2>

<“filename”> Any legal Plus/4 filename. To save the data, the filename
must be enclosed in double quotes. Single quotes cannot be used.

<device> Two possible devices are cassette and disk. To save on
cassette, use device 1: The device number of the Plus/4 disk drive is
usually 8. However, this can be changed (for instance, when using
more than one disk drive). See your Plus/4 DISK DRIVE MANUAL.

oddress 1 > Starting address of memory to be saved.

<address 2> Ending address of memory to be saved + 1. All data up
to but not including the byte of data at this address is saved.

The file created by this command is a program file. The first two bytes
contain the standing address <address 1 > of the data. The file may
be recalled using the L command.

EXAMPLE: S “GAME”, 8, 0400, 0BFF

Saves memory from $0400 to $0BFF onto disk.

COMMAND: T (TRANSFER)

PURPOSE: Transfer segments of memory from one memory
area to another.

191

SYNTAX: T caddress 1 > <address 2> <address 3>

<address 1 > Starting address of data to be moved

caddress 2> Ending address of data to be moved

caddress 3> Starting address of new location (where the data will go)

Data can be moved from low memory to high memory or vice-versa.
Additional memory segments of any length can be moved forward or
backward any number of bytes (i.e., shifted).

EXAMPLE: T 1400 1600 1401

Shifts data from $1400 up to and including $1600 one byte higher
in memory.

COMMAND: V (VERIFY)

PURPOSE: Verify a file on cassette or disk with the memory contents.

SYNTAX: V c“filename">, cdevice>

cfilename> is any legal Plus/4 filename.

cdevice> is a hexidecimal number indicating which device the file is
on; cassette is 1 or 01, disk is 8 or 08, 09, etc.

The Verify command compares a file to memory contents. The Plus/4
responds VERIFYING. If an error is found, the word ERROR is added;
if the file is successfully verified, the flashing cursor reappears.

EXAMPLE: V “WORKLOAD”, 8

COMMAND: X (eXit)

PURPOSE: Exit to BASIC

SYNTAX: X
When the X command is given, the machine stack pointer is set to the
current stack pointer value (see the R command). If this is modified in
any way, after exiting to BASIC use the BASIC CLR command to reset
the pointers.

192

SECTION 6

Screen
Display

Codes

The following chart lists all of the characters built into the Commodore
character sets. It shows which numbers should be POKEd into screen
memory (locations 3072 to 4095) to get a desired character. (Remem
ber to set color memory—2048 to 3071) Also shown is which char
acter corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means
that you cannot have characters from one set on the screen at the
same time you have characters from the other set displayed. The
sets are switched by holding down the SHIFT and G keys
simultaneously.

From BASIC, PRINT CHR$(142) will switch to upper-case/graphics
mode and PRINT CHR$(14) switches to upper/lower-case mode.

Any number on the chart may also be displayed in REVERSE. The
reverse character code may be obtained by adding 128 to the
values shown.

193

SET 1 SET 2 POKE SET1 SET 2 POKE SET1 SET 2 POKE

(a 0 T t 20 (40

A a 1 U U 21 J 41

B b 2 V V 22 * 42

C c 3 W w 23 + 43

D d 4 X X 24 44

E e 5 Y y 25 — 45

F f 6 z z 26 • 46

G g 7 [27 / 47

H h 8 £ 28 0 48

I i 9 J 29 1 49

J j 10 t 30 2 50

K k 11 <— 31 3 51

L 12 SPACE 32 4 52

M m 13 i 33 5 53

N n 14 (I 34 6 54

0 0 15 # 35 7 55

P P 16 $ 36 8 56

Q q 17 O/ /o 37 9 57

R r 18 & 38 • 58

S s 19 39 J 59

194

Codes from 128-255 are reversed images of codes 0-127.

195

SECTION 7

ASCII
and

CHR$
Codes

This appendix shows you what characters will appear if you PRINT
CHR$(X), for all possible values of X. It will also show the values ob
tained by typing PRINT ASC(“X”), where,X is any character you can
type. This is useful in evaluating the character received in a GET
statement, converting upper/lower-case, and printing character
based commands (like switch to upper/lower-case) that could not
be enclosed in quotes..

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 17 c < 34 3 51

1 RVS
ON 18 # 35 4 52

2
CLR

HOME 19 $ 36 5 53

3 INST
DEL 20 O//o 37 6 54

4 21 & 38 7 55

WHT 5 22 39 8 56

6 23 40 9 57

7 24 41 58

DISABLES
SHIFT

8 25 * 42 1 59

ENABLES 9 26 + 43 60
SHIFT £

10 ESCAPE 27 J 44 = 61

11 RED 28 — 45 62

12 —1 29 • 46 ? 63

RETURN 13 GRN 30 / 47 @ 64
SWITCH TO 1 ,
LOWERCASE 14 BLU 31 0 48 A 65

15 SPACE 32 1 49 B 66

16 1 33 2 50 C 67

196

PRINTS

D

E

F

G

H

J

K

M

N

O

P

Q

R

S

T

U

V

W

X

Y

z

£

t

CHR$

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

CHR$ PRINTS CHR$

SPACE

97 |fr

98 ni
99

100 +

126

127

128

129

130101 FLASH
ON

102 FLASH
OFF 131

103

104

105

106

107

108

109

110

111

f1
f3
f5
f7
f2
f4
f6

HELP

132

133

134

135

136

137

138

139

140

112 SHIFT RETURN 141

113
SWITCH TO

UPPER CASE 142

85

86

87

88

89

90

91

114

115

116

117

118

119

120

92 n 121

93 JE 122

94 E S 123

95 J] 124

96 P 125

BLK

I
RVS
OFF

INST
DEL

CLR
HOME

143

144

145

146

147

148

149

150

151

152

153
154

PRINTS

PUR

YEL

CYN

CHR$ __

156

157

158

164

165

166

167

168

169

170

171

172

173

174 _

175

176

177

178

179

180

181

182
183

197

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

184 186 PR 188 ■ 190

Q 185 juj 187 g] 189 191

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

198

SECTION 8

SCREEN MEMORY MAP

Screen
And

Color
Memory

Maps

The following chart lists which memory locations control placing
characters on the screen, and the locations used to change individual
character colors, as well as showing character color codes.

4071

199

aiiiiaaiottiosiaaitaaaiitoa

cceccccitccccccccccctccccccc

COLOR MEMORY MAP

The actual values to change a character’s color are:

1 BLACK 9 ORANGE
2 WHITE 10 BROWN
3 RED 11 YELLOW-GREEN
4 CYAN 12PINK
5 PURPLE 13 BLUE-GREEN
6 GREEN 14 LIGHT BLUE
7 BLUE 15 DARK BLUE
8 YELLOW 16 LIGHT GREEN

The luminance of the color is selected by multiplying the luminance
value (0-7) by 16, and added to the number for the color. To make the
character flash, increase the color value by 128.

200

SECTION 9

PLUS/4
Memory
Register

Map

REG . DB7 : DB6 : DB5 : DB4 : DB3 : DB2 : DB1 : DBO
0 SFFOO TIMER # 1 RELOAD VALUE, BITS 0-7 (LOW)
1 $FF01 TIMER # 1 RELOAD VALUE, BITS 8-15 (HIGH)
2 $FF02 TIMER # 2 RELOAD VALUE, BITS 0-7 (LOW)
3 $FF03 TIMER # 2 RELOAD VALUE, BITS 8-15 (HIGH)
4 SFF04 TIMER # 3 RELOAD VALUE, BITS 0-7 (LOW)
5 $FF05 TIMER # 3 RELOAD VALUE, BITS 8-15 (HIGH)
6 $FF06 •TEST :ECM :BMM : BLANK # ROWS :Y2 :Y1 :Y0
7 $FF07 :RVS0FFPAL7 : FREEZE :MCM :#COLS :X2 :X1 :X0
8 $FF08 KEYBOARD LATCH
9 $FF09 .IRQ :I-T3 •NC :I-T2 :I-T1 :I-LP :I-RAS :NC

10 SFFOA :NC EI-T3 :NC EI-T2 :EI-T1 :EI-LP :EI-RAS :RC8
11 $FFOB :RC7 :RC6 :RC5 :RC4 :RC3 :RC2 :RC1 :RC0
12 $FFOC :NC NC :NC :NC :NC NC :C9 CUR8
13 SFFOD :CUR7 :CUR6 :CUR5 :CUR4 :CUR3 CUR2 :CUR1 CURO
14 $FFOE :SND1-7 :SND1-6 :SND1-5 :SNDl-4 :SND1-3 :SND1-2 :SND1-1 :SND1-0 :
15 SFFOF :SND2-7 SND2-6 :SND2-5 :SND2-4 :SND2-3 :SND2-2 :SND2-1 SND2-0 :
16 SFF10 :NC :NC :NC :NC :NC :NC :SND2-9 :SND2-8 :
17 SFF11 SND-REL:NOISE :V2-SEL :V1-SEL :V0L3 :V0L2 :V0L1 VOLO
18 $FF12 :NC :NC :BMB2 :BMB1 :BMB0 :RBANK :S1-9 :S1-8
19 $FF13 :CB5 :CB4 :CB3 :CB2 :CB1 :CB0 SCLOCK : STATUS :
20 $FF14 :VM4 :VM3 :VM2 :VM1 :VM0 NC :NC :NC
21 $FF15 BKGDO :NC LUM2 :LUM1 :LUM0 :COLOR3 COLOR2 COLOR1 :COLORO :
22 SFF16 BKGD1 :NC LUM2 :LUM1 :LUM0 :COLOR3 COLOR2 COLOR1 COLORO:
23 SFF17 BKGD2 :NC :LUM2 :LUM1 :LUM0 COLOR3 COLOR2 COLOR1 COLORO :
24 $FF18 BKGD3 :NC :LUM2 :LUM1 :LUM0 COLOR3 COLOR2 COLOR1 :COLORO :
25 $FF19 BKDG4 :NC LUM2 :LUM1 :LUM0 :COLOR3 COLOR2 COLOR1 :COLORO :
26 $FF1A :NC :NC :NC :NC NC NC BRE9 :BRE8
27 $FF1B :BRE7 :BRE6 BRE5 :BRE4 :BRE3 ■BRE2 :BRE1 BREO
28 $FF1C :NC :NC :NC NC :NC NC :NC :VL8
29 $FF1D :VL7 :VL6 :VL5 :VL4 :VL3 :VL2 :VL1 :VL0
30 $FF1E :H8 :H7 :H6 :H5 :H4 :H3 :H2 :H1
31 $FF1F :NC :BL3 :BL2 :BL1 :BLO VSUB2 VSUB1 VSUBO
62 SFF3E ROM SELECT
63 $FF3F RAM SELECT

•••••••••••••••••••••••••••

< c c t c t c e c c e e t c c c < c c c • c c c c c

ADDRESS CONTENTS NOTES

SFFFE-FFFF <IRQ VECTOR > *
$FFFC <RES VECTOR > *
$FFFA <NMI VECTOR (NOT USED) > * ROM BANK HIGH (cont)

< *

$FF81-FFF5 cKERNALJUMPTABLE > *
SFF40-FF80
SFF00-FF3F <TEDCHIP > *

SFEOO-FEFF

~7> *

<DMA DISK SYSTEM > * TED Chip and I/O
SFDEO-FDEF < > * space appear in
SFDDO-FDDF cCARTRIDGE BANK PORT > * all memory maps.
SFD10-FD1F <6529 PARALLEL PORT > *
SFD00-FD0F <ACIA > *

SFCDO-FCFF < > ROM banking routines

< > (appear in all ROM maps)
SD800-FCFF < Z> *

*

SD000-D7FF <CHARACTER ROM > * ROM BANK HIGH
*

SC000-D7FF <MORE BASIC > *

S8000-BFFF <BASIC > ROM BANK LOW

S4000-FFFF <RAM, ALSO START OF BASIC TEXT >

<AREA WHEN HIRES GRAPHICS ARE USED >
S2000-3FFF <BIT MAP SCREEN DATA >

S1C00-1FFF <HIRES SCREEN VIDEO MATRIX >

$1800-1BFF < HIRES SCREEN ATTRIBUTE BYTES >

$1000- < BASIC TEXT AREA (BIT MAP OFF) >

$OCOO-OFFF <TEXT VIDEO MATRIX (SCREEN MEMORY) >

S0800-0BFF <TEXT ATTRIBUTE BYTES (COLOR MEMORY) >

S0000-07FF <SYSTEM STORAGE >

*NOTE: In the 64K RAM system, RAM goes from $0000-$FCFF, and from $FF40-$FFFF.

202

SECTION 10

Deriving
Mathematical

Functions

Functions that are not intrinsic to BASIC 3.5 may be calculated as
follows:

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC EQUIVALENT

SEC(X)=1/COS(X)
CSC(X)=1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X + 1))
ARCCOS(X)= - ATN(X/SQR

(— X*X+1))+tt/2
ARCSEC(X)=ATN(X/SQR(X*X-1))
ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1*77/2)
ARCOT(X)=ATN(X)+7t/2
SINH(X) = (EXP(X)-EXP(-X))/2
COSH(X) = (EXP(X) = + EXP(-X))/2
TANH(X)=EXP(-X)/(EXP(x) + EXP

(—X))*2+1
SECH(X)=2/(EXP(X) + EXP(-X))
CSCH(X)=2/(EXP(X)-EXP(-X))
COTH(X) = EXP(-X)/(EXP(X)

-EXP(-X))*2 + 1
ARCSINH(X) = LOG(X+SQR(X*X+1))
ARCCOSH(X) = LOG(X + SQR(X*X-1))
ARCTANH(X)=LOG((1 + X)/(1 -X))/2
ARCSECH(X) = LOG((SQR

(-X*X+1)+1)/X)
ARCCSCH(X) = LOG((SGN(X)*SQR

(x*x+1)/x))
ARCCOTH(X) = LOG((X +1)/(x-1))/2

203

SECTION 11:

Musical
Note

Table

The above table contains the sound register values of four octaves of
notes. The sound register values are used as the second parameter
of the SOUND command. To use the first note in the table (A—sound

NOTE SOUND REGISTER VALUE ACTUAL FREQUENCY (HZ)

A 7 110
B 118 123.5
C 169 130.8
D 262 146.8
E 345 164.7
F 383 174.5
G 453 195.9
A 516 220.2
B 571 246.9
C 596 261.4
D 643 293.6
E 685 330
F 704 349.6
G 739 392.5
A 770 440.4
B 798 494.9
£ 810 522.7
D 834 588.7
E 854 658
F 864 699
G 881 782.2
A 897 880.7
B 911 989.9
C 917 1045
D 929 1177
E 939 1316
F 944 1398
G 953 1575

204

205

to

register value 7) use the 7 as the second number after the SOUND
command—SOUND 1,7,30.

Use the following formula to find the sound register values for frequen
cies other than those in the table:

SOUND REGISTER VALUE = 1024—(111860.781/FREQUENCY)

Both the table of sound register values and the above formula are for
NTSC televisions. This is the television standard used throughout the
United States and all of Canada. If you are in a country where PAL is
the television standard, you should use the following formula to calcu
late new sound register values for the entire table:

SOUND REGISTER VALUE = 1024—(111840.45/FREQUENCY)

• ••••••••••(••••••••c••
c c • <

SECTION 12

Programs

Try

Sound
Effects

5 GRAPHIC 3,1: GRAPHIC 0, 1
10 INPUT “SHOULD I CLEAN UP MY MESS”; A$
20 INPUT “SHOULD I ROTATE”; B$
30 INPUT “SHOULD I VARY MOTION”; C$
40 INPUT “SHOULD I PICK THE START”; D$
50 IF A$=“Y" THEN DIM A (3,200)
60 DEF FNA (X) = INT(RND(1) * X)
70 IF D$=“Y” THEN XI =FNA(80)+80: X2 =FNA(80)+80:

Yl=FNA(100) + 100
75IFD$ = “Y” THEN Y2=FNA(100) + 100
80IFD$O“Y” THEN Xl = 80: X2 = 80: Yl = 100: Y2 = 100
90 GRAPHICS: FORL=1 TO 3: COLOR L, FNA(15)+2, FNA(8):

NEXT
100 IF CKl THEN COLOR FNA(3) + 1, FNA(15)+2, FNA(8):

Cl=FNA(40)+20
110 IF C2O0 THEN 140: ELSE XA=FNA(ll)-5: XB=FNA(ll)-5:

YA=FNA(13)-6
115 YB=FNA(13)-6
120 IF C$ = “Y” THEN C2=FNA(10) + 5
130IFB$ = “Y” THEN XB = -XA: YB = -YA
140 IF C3< 1 THEN C=FNA(3) +1: C3 =FNA(10)
145 IF A$=“Y" THEN DRAW 0, A(0,P), A(1,P) TO A(2,P), A(3,P)
150 Xl= X1+ XA: X2= X2+ XB: Yl= Y1 + YA: Y2= Y2+ YB
160 IF Xl<0 OR Xl>159 THEN XA= -XA: XI = Xl+XA
170 IF X2<0 OR X2>159 THEN XB= -XB: X2= X2+XB
180 IF Yl<0 OR Yl>199 THEN YA= -YA: Yl= Yl+YA
190 IF Y2<0 OR Y2>199 THEN YB= -YB: Y2= Y2+YB
200 DRAW C, XI, Y1 TO X2, Y2
210 IF A$="Y” THEN A(0,P)= XI: A(1,P)=Y1: A(2,P)=X2:

A(3,P)=Y2: P= P+1
215 IF A$ = “Y” THEN IFP>200THENP=0
220 Cl= Cl —1: C2= C2-1: C3= C3-1: GOTO 100

Wolf Whistle
10 VOL7
20 FOPL=400T0800STEP20
30 SOUND1,L,3:NEXT
40 FORL=300T0600STEP40
50 SOUND1,L,3:NEXT
60 FORL=600T0300STEP-40
70 SOUND1,L,3:NEXT

Computer Maniac
10VOL7
20 FORL = lTO100
30 SOUND1,INT(RND(0)*500)+400,4
40 NEXT

Telephone
10VOL7
20FORL = lTO5
30FORM = lTO60
40 SOUND1,466,1
50 SOUND1,1020,1
60 NEXT
70 FORZ = 1T02000:NEXT
80 NEXT

Busy Signal
10VOL7
20FORL=lTO15
40 SOUND1,466,20
50 SOUND1,W20,15
80 NEXT

Bubbles
10 VOL7
20 GRAPHIC!, 1
30FORM = lTO50
40 GOSUB80
50 SOUND1,900—R*20, (YR/2) + 50
60 CIRCLE!,X,Y,R,YR
70 NEXT :GRAPHIC0: END
80 X=INT(RND(0)*280)+20
90 Y=INT(RND(0)*160)+20
100 R=INT(RND(0)*40) + 5
110 YR=R/1.3
120 RETURN

Zap Beam
10VOL7
20FORM = 1TO 20
30 FORL = 900TC850STEP-10
40 SOUND!,L,1

207

e•tcc• • a

50 NEXT
60 FORL=850T0900STEP10
70 SOUND1,L,1
80 NEXT
100 NEXT

Music Lines
10VOL7
15X1=O:Y1=O
20 GRAPHIC1.1
30 GETA$:IFA$ = “ ”THENGRAPHICO:END
40 GOSUB80
45 FORL = 1TODSTEP2
50 SOUND1,X*3,5
55 SOUND2,Y*3,5
60 DRAWl.X.Y
65 X=X+2*DX: Y=Y+2*DY
70 NEXT:GOTO30
80 X=Xl:Xl=INT(RND(0)*280)+20
90 Y=Yl:Yl=INT(RND(0)*160)+20
100 A=X1 —X:B=Y1 —Y:D=SQR(A*A+B*B)
110 DX=A/D:DY=B/D
120 RETURN

208

SECTION 13

RS-232
Interface

Introduction
Your Commodore Plus/4 has a built in RS-232 interface for connection
to any RS232 modem, printer, or other device. To connect a device to
your Plus/4 requires a cable and some additional programming. The
Commodore modem connects directly.

RS-232 on the Plus/4 is standard RS-232 format, but the voltages are
TTL levels (0 to 5V) rather than the normal RS-232 -12 to 12 volt range.
The cable between the Commodore Plus/4 and the RS-232 device
should accommodate the necessary voltage conversions. (The Com
modore RS-232 interface cartridge handles this properly.)

The RS-232 interface software can be accessed from BASIC or frbm
the KERNAL for machine language programming. This section ad
dresses the use of RS-232 from BASIC. For more detailed information,
and for use from machine language, consult the Commodore Plus/4
Programmers Reference Guide. RS-232 from BASIC level uses the
normal BASIC commands: OPEN, CLOSE, CMD, INPUT#, GET#,
PRINT#, and the reserved variable ST. INPUT# and GET# recall
data from the receiving buffer, while PRINT# and CMD place data into
the transmitter.

Opening
The

RS-232
Channel

Only one RS-232 channel should be open at any time; a second OPEN
statement causes the receive buffer pointer to be reset, causing any
characters in the buffer to be lost.

Up to 4 characters may be sent in the filename field. The first two are
control and command register characters; the other two are reserved
for future system options. Baud fate, parity, and other options can be
selected through this feature.

Basic Syntax:
OPEN If,2,0,<”> control register command register<”

EXAMPLE:
OPEN 2,2,0, CHR$(5)+ CHR$(15)

If—Normal logical file i.d. (1 -255). If If > 127, then linefeed follows
carriage return.

control register—Single byte character (see Figure 1) (required to
specify baud rate)

command register—Single byte character (see Figure 2)

209

tM
iia

oi
iti

ie
tia

iM
iti

ai
i

m
i i

m
u

) i
 ii

m
i 11

1
j ii

 ii
Ji

Getting
Data

From
An

RS-232
Channel

When receiving data, the Commodore Plus/4 receiver buffer holds 127
characters before the buffer overflows. This is indicated by the RS-232
status word (ST from BASIC). All characters received when the buffer is
full are lost. Obviously, it pays to keep the buffer as empty as possible.

Receiving RS-232 data at high speeds calls for use of machine lan
guage, since the speed of BASIC is a limitation.

STOP BITS

RECEIVER CLOCK SOURCE

•This allows for 9-bit transmission (8 data bits plus parity).

0 = External Receiver Clock
1 = Baud Rate Generator

CONTROL REGISTER
The Control Register is used to select the desired mode for
the 6551. The word length, number of stop bits, and clock
controls are all determined by the Control Register, which is
depicted in Figure 1.

2 = 1 Stop Bit

i = 2 Stop Bits
1 Stop Bit if Word Length
= 8 Bits and Parity*
1'/2 Stop Bits if Word Length
= 5 Bits and No Parity.

CONTROL REGISTER

7 6 5 4 3 2 1 0

BAUD RATE
GENERATOR

0 0 0 0 16x EXTERNAL CLOCK

0 0 0 1 50 BAUD

0 0 1 0 75

0 0 1 1 109.92

0 1 0 0 134.58

0 1 0 1 150

0 1 1 0 300

0 1 1 1 600

1 0 0 0 1200

1 0 0 1 1800

1 0 1 0 2400

1 0 1 1 3600

1 1 0 0 4800

1 1 0 1 7200

1 1 1 0 9600

1 1 1 1 19,200

WORD LENGTH

BIT DATA WORD
LENGTH6 5

0 0 8

0 1 7

1 0 6

1 1 5

HARDWARE RESET

PROGRAM RESET

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Figure 1. Control Register Format

Basic Syntax:
Recommended: GET# If, <string varlable>

NOT Recommended: INPUT# If, <variable list>

210

COMMAND REGISTER
The Command Register is used to control Specific
Transmit/Receive functions and is shown in Figure 2.

COMMAND REGISTER

PARITY CHECK CONTROLS

BIT OPERATION

7 6 5

— — 0 Parity Disabled—No Parity Bit
Generated—No Parity Bit Received

0 0 1 Odd Parity Receiver and Transmitter

0 1 1 Even Parity Receiver and
Transmitter

1 0 1 Mark Parity Bit Transmitted.
Parity Check Disabled

1 1 1 Space Parity Bit Transmitted.
Parity Check Disabled

—DATA TERMINAL READY

0 = Disable Receiver and All
Interrupts (DTR high)

1 = Enable Receiver and All
Interrupts (DTR low)

--------------------------------------RECEIVER INTERRUPT ENABLE

0 = IRQ Interrupt Enabled from Bit 3
of Status Register

1 = IRQ Interrupt Disabled

NORMAL/ECHO MODE
FOR RECEIVER----------

0 = Normal
1 = Echo (Bits 2 and 3

must be “0")

■TRANSMITTER CONTROLS

BIT TRANSMIT
INTERRUPT

RTS
LEVEL

TRANSMITTER

3 2

0 0 Disabled High Off

0 1 Enabled Low On

1 0 Disabled Low On

1 1 Disabled Low Transmit BRK

HARDWARE RESET

PROGRAM RESET

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0

— — — 0 0 0 0 0

•These bits must be set to the given values.

Figure 2. Command Register Format

NOTES
If the word length is less than 8 bits, all unused bit(s) are assigned a
value of zero.

If a GET# does not find any data in the buffer, the character (a null)
is returned.

If INPUT# is used, then the system hangs until a non-null character
and a following carriage return is received. Thus, if the CTS or DSR
line(s) disappear during character INPUT#, the system hangs in a
RESET-only state. This is why the INPUT# and CHRIN routines are
NOT recommended.

211

Sending Data
To An RS-232

Channel

Basic Syntax:
CMD If—acts same as in BASIC specifications

PRINT# lf,<variable list>

ClOSinO Closing an RS-232 file discards all data in the buffer at the time of
■ j? execution, stops all RS-232 transmitting and receiving, and sets the

RS 232 RTS and Sout lines high.

Data Basic Syntax:
Channel close if

Table 1. RS-232 Port Lines
PIN
ID DESCRIPTION EIA ABV OUT

c RECEIVED DATA (BB) Sin IN
D REQUEST TO SEND (CA) RTS OUT
E DATA TERMINAL READY (CD) DTR OUT
F RING INDICATOR (CE) Rl IN
H RECEIVED LINE SIGNAL (CF) DCD IN
J UNASSIGNED () XXX IN
K CLEAR TO SEND (CB) CTS IN

DATA SET READY (CC) DSR IN

B RECEIVED DATA (BB) Sin IN
M TRANSMITTED DATA (BA) Sout OUT

A PROTECTIVE GROUND (AA) GND
N SIGNAL GROUND (AB) GND

212

MODES:

I 7 | | 6 | I 5 J I 4 | | 3 | I 2 | | 1 | I 0 | (Machine lang.—rsstat)
: : : : : : : PARITY ERROR BIT
:::::: : FRAMING ERROR BIT
: : : : : : RECEIVER BUFFER OVERRUN
: : : : UNUSED BIT
: : : :CTS SIGNAL MISSING BIT
: : :UNUSED BIT
: DSR SIGNAL MISSING BIT
: - BREAK DETECTED BIT

NOTES
Figure A-3. RS-232 Status Register

If the BIT=0, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable
ST

If ST is read by BASIC or by using the KERNAL READST routine the
RS-232 status word is cleared upon exit. If multiple uses of the STATUS
word are necessary, the ST should be assigned to another variable, i.e.

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel
was the last external I/O used.

213

■••••••••••••••••••••••••a*

9

*

9

9

9

9
—

SAMPLE
BASIC

PROGRAM

This program opens the telecommunications channel to allow you to
communicate using a modem.

100 OPEN 5, 2, 2, CHR$(22)+CHR$(5): REM ALLOCATE BUFFER
AND OPEN CHANNEL

110DIMF%(255), T%(255)
120 FOR J= 32 TO 64: T%(J)=J:NEXT
130 T%(13) = 13: T%(20)=8: RV=18: CT=0
220FOR J=65TO 90: K=J+32: T%(J)=K: NEXT
230 FOR J=91 TO 95: T%(J)=J: NEXT
240 FOR J=193 TO 218: K=J-128: T%(J)=K: NEXT
250 T%(146) = 16: T%(133) = 16
255 T%(137)=3: T%(134) = 17: T%(138) = 19
260 FOR J=OTO 255
270K=T%(J)
280 IF K<>0 THEN F%(K)=J: F%(K+128)=J
290 NEXT
300 PRINT" ”CHR$(147)
310GET#5, A$
320 IF A$=“” THEN 360
330PRINT" ”CHR$(157);CHR$(F%(ASC(A$)));
340 IF F%(ASC(A$))=34 THEN PRINT CHR$(27)“O”;
350 GOTO 310
360 PRINT CHR$(RV)“ ”CHR$(157);CHR$(146);: GET A$
370 IF A$<>“” THEN PRINT#5,CHR$(T%(ASC(A$)));
380 CT=CT+1
390 IF CT=8 THEN CT=0: RV=164-RV
410 GOTO 310

214

SECTION 14

Books
For

Commodore
Products

The following lists include a sampling of the computer and program
ming books available. The title of the book is listed first, followed by the
author and publisher.

Commodore Books
VIC 20 Programmer’s Reference Guide
Commodore 64 Programmer’s Reference Guide
Commodore Plus/4 Programmer’s Reference Guide
Mastering Your VIC 20
Four VIC 20 Computer Books:

VIC Revealed, Nick Hampshire
VIC Games, Nick Hampshire
VIC Graphics, Nick Hampshire
Stimulating Simulations for the VIC, C.W. Engel

Introduction to BASIC, Part 1 and 2, Andrew Colin
Commodore Software Encyclopedia, Third Edition

BASIC Programming
Armchair BASIC: An Absolute Beginner’s Guide to Programming

in BASIC, Fox & Fox, Osborne/McGraw-Hill
BASIC Handbook, Second Edition, Lien, Compusoft
Basic Commodore 64 BASIC, Coan, Hayden
Elementary BASIC, Ledgard & Singer, SRA
Howto Build a Program, Emmerichs, Dilithium Press
Instant Freeze-Dried Computer Programming in BASIC, Brown
My Computer Likes Me When I Speak in BASIC, Albrecht,

Dilithium Press
Nailing Jelly to a Tree, Willis & Danley, Dilithium Press
The Programmer’s Book of Rules, Ledin & Ledin, Lifetime

Learning Publishers
Technical BASIC, Kassab, Prentice-Hall

Machine Language Programming
Machine Language for Beginners, Mansfield, COMPUTE! Books
Programming the 6502, Zaks, Sybex
6502 Assembly Language Programming, Leventhal, Osborne/

McGraw-Hill
6502 Micro Chart, Micro Logic Corp.
6502 Software Design, Scanlon, Sams
The 6502 Software Gourmet Guide & Cookbook, Findlay, Hayden

215

INDEX a
Abbreviations for BASIC

statements 169-171
Animation 87-89
Arrays 164
ASCII and CHR$ codes 169,

196-198
Assigning data

DATA... READ statements
74-75, 133-134, 151,170

INPUT 73, 141,170
GET 138, 169
LET 142, 170

AUTOmatic renumbering 118,169

B
BACKUP command 118, 169
BASIC

abbreviations 169-171
commands 69-82,118-129
converting to Commodore

BASIC 172, 173
functions 28-31,158-163
statements 69-82, 130-157

BOX statement 100-101,130,
169

Built-in software 34

c
Calculations

addition 59, 63
decimals 59
division 59, 63
execution order 62-63
exponentiation 65
fractions 59
mathematical operators 59,

167-168
multiplication 59, 63
parentheses 62-63

PRINT statement 61-62
relational operators 59,

167-168
scientific notation 60
subtraction 59, 63

Cartridges
installing 35
loading 35

Cassette tapes
recorder 4,19
LOADing 36
SAVEing 37, 127
software 36-37

-CHAR statement 95-96, 130-131,
169

CHR$ codes 169, 196-198
CHR$ function 162, 196-198
Clearing 25-26
CLR command 25-26, 132, 169

graphics modes 28, 84-89
graphics screen 93, 169
memory 199-202
screen 193-195

CIRCLE statement 98-100,
131-132, 169

CLOSE statement 132,169
CLR statement 25-26, 132, 169
CMD statement 132-133, 169
COLLECT command 119, 169
Color

areas 90-91
background 90-91
border 90-91
changing 27, 100-101
COLOR statement 90-91,133,

169
filling areas 100-101
keys 27
luminance 90
memory map 199-202
PAINT 100-101, 145
screen 193-195

216

Commands (See BASIC
commands)

Commas
in PRINT statements 55-56
separating numbers 61
vs. semicolons 55-56

Commodore key 26
Conditional Statements

IF/THEN 79, 140-141, 170
Connecting the computer 8-18
CONT command 119, 169
Control (CTRL) key 26
Control Statements

GOTO 47, 76-77, 139
FOR/NEXT/STEP 77-78

Conversion programs 172-173
COPY command 119, 169
Copying diskettes 119
Cursor

controlling movement 25-26
cursor keys 25-26
in PRINT statements 25, 49-51

D
DATA statements 74-75, 133-134
Debugging

CONT 119, 169
DS$41
STOP 155, 171
RESUME 152, 171
TRAP 155, 171

DEF FN statement 134, 169
Defining functions keys 30-31
Defining functions in programs

30-31
DELete

command 25, 120, 169
editing 25
files from a diskette 25
key 25
letters in a word 25, 49-51

lines in a program 25, 49-51,
120

DIM statement 134-135, 169
Dimensioning an array 134-135
Direct mode 70
DIRECTORY 41, 120-121, 169
Diskettes

COPY statement 119, 169
DIRECTORY command 41,

120-121, 169
disk drives 4, 19, 38
disk error messages 39, 174-

183
DLOAD command 30-31,

38-39, 121, 169
DS$41
duplicating 119
formatting 39-40
HEADER command 39-40,

122, 170
listing a directory 41, 120-121
loading 38-39, 121, 124-125
SAVEing 40-41, 127
table of contents 41

DLOAD 30-31, 121
DO/LOOP/WHILE/UNTIUEXIT

78, 135-136
DRAW 94-95, 136, 169
DS$41
DSAVE 30-31, 122, 169
Duplicating diskettes 119

E
Editing

INSert key 25
INSert mode 25, 28-29
DELete key 25
DELete command 25, 120,

169
RENUMBER command 70,

126-127, 171

217

•llllllllllllllltlllllltlll

(crteccccccccrectic c r c • t r c e c

Encyclopedia 115-214
END statement 136
Errors

Debugging statements
174-183

Disk errors 39, 174-183
Messages explained 39,

174-183
ESCape functions 28-29, 57
ESCape key 28-29
EXP function 158, 169

F
Flash mode

Flash on and off 27
keys 27
using in PRINT statements 27

FOR... TO... STEP 77-78,
136-137

Formatting diskettes 39-40
Formatting output

PRINT USING 145-150
PUDEF 150-151, 170
print zones 55-56
punctuation 55-56

Functions
Numeric 59-67, 158-162, 203
String 162-163
Other 163

Function keys 30-31

G
GET statement 138, 169
GETKEY statement 74, 138, 169
GET# 138-139, 169
GOSUB80, 139, 169
GOTO 47, 76-77, 139, 169
Graphics

BOX 97-98, 100-101, 130, 169
CIRCLE 98-100, 131-132, 169
clearing 93, 169

COLOR 90-91,169
DRAW 94-95, 136, 169
GRAPHIC command 92-93,

139-140, 157, 169
high resolution 92-93
keys 28-29
modes 28, 84-89
multicolor modes 102-103
PAINT 100-101, 145
printing graphic symbols

84-86
uppercase/graphic mode 24,

28
GSHAPE 153-154, 170

H
HEADER command 39-40, 122,

170
HELP key 30-32, 123
High resolution graphics 92-93

IF... THEN... ELSE 79, 140-141,
170

Immediate mode 62, 70
INPUT# 141, 170
INPUT statement 73, 141, 170
Input/Output Statements

PRINT 71-73
INPUT 73, 141, 170
GETKEY 74, 138, 169
READ/DATA 74-75, 133-134,

151, 170
Insert

editing 25
key 25
mode 25

Insert mode
accessing 25, 28-29
key 25

Installing the computer 8-18

218

INSTR function 158-159,170
INT function 66-67, 159, 170
Integer variables 64, 164

J
Joy sticks 5, 12, 159, 170

K
Key command 31,123, 170
Key redefining 30-31
Keyboard

color keys 27
cursor keys 25-26
graphic keys 28-31
help key 30-32
programmable function keys

30-31
special keys 24, 29

Left$ function 162, 170
LET statement 142, 170
LIST statement 30-31,48-49,

124, 170
Loading

cartridges 35
cassettes 36
diskettes 38-39, 121
DLOAD command 30-31,
38-39, 121,169

LOAD command 124-125, 170
LOCATE

statement 142, 170
Loops
DO... LOOP... WHILE/UNTIL

78, 135-136
GOSUB80, 139
GOTO 47, 76-77, 139
FOR... TO... STEP 77-78,

136-137

IF... THEN... ELSE 79,
140-141, 170

ON... GOSUB/GOTO 143,
170

Luminance 90

M
Machine Language Monitor

184-192,
Mathematical functions 59-67,

158-162, 203
Mathematical operators 59
Memory maps 199-202
MID$ function 162, 170
Modems 214
Modes

flash 27
graphics 84-89
insert 28-29
multi-color 102-103
reverse 45-46
uppercase/graphic 28, 84-86
upper/lowercase mode 28,

84-86
MONITOR 142, 170
Monitor

connecting to computer 13-16
machine language 184-192

Multi-Color graphics 102-103
Music

duration of notes 107
SOUND statement 106,

204-205
voices 106-107
volume 105, 156, 171

N
NEW command 51,126, 170
NEXT statement 77-78,143, 170
Numbers

calculating 61-67, 72-73, 203

219

exponentiation 65
execution order in multiple

calculations 62-63T65-67
fractions 59-60
mathematical operators 59
pi 59, 163
relational operators 59,

167-168
scientific notation 60
signs (+ and -) 59
variables 64, 170

0
ON...GOSUB143, 170
ON... GOTO 143
OPEN command 144-145, 170
Operators 59, 167-168

P
PAINT 100-101,145, 170
PEEK function 160, 170
Peripherals 19-21
Pi 59, 163
Pixel cursor

in graphics modes 84-89
LOCATE statement 142, 170
positioning 25-26, 49-51

POKE statement 146, 170
Power supply 8, 12-13, 16-17
PRINT

calculations 61-62, 72-73, 203
displaying messages 71-73
formatting output 145-150
in immediate mode 62, 70
in program mode 71-73
print zones 55-56
punctuation 55-56

PRINT# 147, 170
PRINT USING 145-150, 170
Print zones 55-56

Program flow control (See
Loops)

Programming
BASIC commands 69-82,

118-129
BASIC functions 30-31,

158-163
BASIC statements 69-82,

130-157
function keys 28-31, 123
machine language monitor

184-192
mode 70

PUDEF 150-151,170

Q
Quote mode

accessing 47, 56
keys 47
using in PRINT statements

47-48, 56

R
Random numbers 65-67, 171
READ statement 74-75, 151,170
Relational operators 59, 167-168
REM statement 80-81,151-152,

170
RENAME command 126, 171
RENUMBERING program lines

70, 126-127
Reset button 10
RESTORE 152, 171
RESUME 152, 171
Resuming program display 152,

171
RETURN 152, 171
Reverse mode

accessing 27, 45-46
keys 27, 45

220

using in PRINT statements
45-46

RF cable 9,11
RIGHTS function 163, 171
RND function 66-67, 160-161,

171
RS-232 Interface 209-213
RS-232 port 12
RUN command 30-31,70, 127,

171

s
SAVE command 127-128, 171
Saving programs

cassettes 37
disk errors 41,174-183
diskettes 40-41, 127-128
DSAVE 30-31,40, 127
SAVE 127-128, 171

SCALE 152-153, 171
Scientific Notation 60
SCNCLR statement 93, 153, 171
SCRATCH command 128, 171
Screen

clearing 25-26, 132, 169
clearing graphic modes 93,

169
display codes 26, 52, 193-195
LIST command 30-31, 48-49,

170
memory map 199-202
program display 193-195
resuming display 152
size 57, 86
slowing display 26
windowing 57

Screen area numbers chart 90
Semicolons

in PRINT statements 55-56
vs. commas 55-56

Setting up the computer 8-18

Slowing program display 26
Software

built-in 34
cartridges 35
cassettes 36-37
diskettes 38-41
LOADing 35-36, 38-40
saving your own 37, 40-41,

127-128
Sound effects 108, 206-208
SOUND statement 106, 153,

171,204-205
SPC function 163, 171
SSHAPE 153-154, 171
STOP statement 155, 171
Stopping program display 24,

52
String functions 162-163, 171
Subroutines 80
SYS statement 34, 155, 171

T
TAB function 88, 163, 171
TEDMON 184-192
TEXT

in graphics 92-93
in PRINT statements 71-73
string functions 70-73,

162-163
Tl$ function 164, 171
TRAP statement 155, 171
TROFF156, 171
TRON 155, 171
Troubleshooting chart 17-18
TV

antenna types 13, 17
channel selection 11, 15-17
hookup 13-18
switch box 9, 11, 13, 15-17

221 —

c t t c
« t c (c in

 etc c 11 it i t c i t c t i

Uppercase/graphics modes
accessing 24, 26, 28
printing graphics 84-89
SHIFT key 24, 28

Upper/lowercase graphics
accessing 24, 26, 28
printing graphics 84-89
SHIFT key 24, 28

V
Variables

floating point 64, 164
integer 64, 164
reserved names 116-117,

165-166
text string 64, 73, 164
types 64, 164-166
see also Assigning data

VERIFY command 70, 128-129,
171,192

Voices 106-107
VOLume 105, 156, 171

w
WAIT statement 156, 171
Windowing 57, 86

222

Notes

cg
oo

gs
ot

sc
oo

tto
oa

ia
tii

*

Notes

Notes

ao
ao

ao
ao

ao
oa

oo
eo

oa
at

aa
ae

a

3 3
 8

J 3
 3

3 3
 3

3 3
 3

3 3
 3

0 3
 3

3 3
 3

3 3
 3

3 3
 3

1

Notes

Notes
taaiiiiistim

m
otitc

 j

c f c c c ® c c t c < t c t c c c • c c c c c c e c

Notes

MM ■Notes
H

M
IM

IM
taoaiO

IM
M

SIM
M

I

3 3
 a

a b
 a

a 3
 a

a 3
 a

a 3
 3

a a
 3

3 a
 s

a a
 a

3 a
 a

a

Notes

<

Notes

About the Commodore ’ PLUS/4™ User’s Manual...

The Commodore Plus/4, the “productivity machine,” is perfect
for finances, accounting or any small business application. As
a home computer, the Commodore Plus/4 has 64K of memory,
with advanced color, graphic, sound and BASIC programming
capabilities. This easy-to-read User’s Manual gives you all the
information you need to set up your equipment, use software
and learn about computing with your new Commodore Plus/4.

Even if you've never used a computer before, you can follow
the step-by-step instructions and explanations to get into com
puting right away. For those already familiar with computing, the
Commodore Plus/4 Encyclopedia contains a volume of useful
information about the Commodore Plus/4 including a complete
review of every command in the BASIC language built into the com
puter. This manual also contains explanations of the advanced
features of the Commodore Plus/4 and tells you how to get the
most out of these expanded capabilities.

You can learn how to use the Commodore Plus/4’s built-in
integrated software packages—the spreadsheet, graphics, word
processing and file manager—by reviewing the Commodore
Plus/4 Integrated Software User’s Manual, also included with your
new computer.

commodore
COMPUTERS

Commodore Business Machines, Inc.—Computer Systems Division
1200 Wilson Drive, West Chester, PA 19380

ISBN 0-88731-021-4

